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We study the classic setting where two agents compete against each other in a zero-sum game by applying

the Multiplicative Weights Update (MWU) algorithm. In a twist of the standard approach of [11], we focus on

the K-L divergence from the equilibrium but instead of providing an upper bound about the rate of increase

we provide a nonnegative lower bound for games with interior equilibria. This implies movement away from

equilibria and towards the boundary. In the case of zero-sum games without interior equilibria convergence to

the boundary (and in fact to the minimal product of subsimplexes that contains all Nash equilibria) follows via

an orthogonal argument. In that subspace divergence from the set of NE applies for all nonequilibrium initial

conditions via the first argument. We argue the robustness of this non-equilibrating behavior by considering

the following generalizations:

• Step size: Agents may be using different and even decreasing step sizes.

• Dynamics:Agentsmay be using Follow-the-Regularized-Leader algorithms and possibly apply different

regularizers (e.g. MWU versus Gradient Descent). We also consider a linearized version of MWU.

• More than two agents:Multiple agents can interact via arbitrary networks of zero-sum polymatrix

games and their affine variants.

Our results come in stark contrast with the standard interpretation of the behavior of MWU (and more

generally regret minimizing dynamics) in zero-sum games, which is typically referred to as “converging to

equilibrium". If equilibria are indeed predictive even for the benchmark class of zero-sum games, agents in
practice must deviate robustly from the axiomatic perspective of optimization driven dynamics as captured by

MWU and variants and apply carefully tailored equilibrium-seeking behavioral dynamics.
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Fig. 1. Player Strategies Spiraling Outwards in Matching Pennies when Updated with 2500 Iterations of
Multiplicative Weights. All Experiments Start with the Same Initial Condition.

Authors’ addresses: James P. Bailey, Singapore University of Technology and Design, james_bailey@sutd.edu.sg; Georgios

Piliouras, Singapore University of Technology and Design, georgios@sutd.edu.sg.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM EC’18, June 18–22, 2018, Ithaca, MA, USA. ACM ISBN 978-1-4503-4529-3/18/06. . . $15.00

https://doi.org/10.1145/3219166.3219235

https://doi.org/10.1145/3219166.3219235


1 INTRODUCTION
We study arguably the most well known online learning dynamic, Multiplicative Weights Update

(MWU) [12, 16] in the most well studied class of games (zero-sum games). Naturally, the prominence

of each of these objects in their respective fields, i.e., the centrality of MWU for online learning,

optimization and classification and similarly of zero-sum games for game theory is indisputable. In

fact, both of these objects as well as the question about how does MWU behave in zero-sum games

is a subject matter that is typically studied in undergrad and graduate courses on these subjects.

Our current understanding and interpretation of this setting revolves around a classic work by

Freund and Schapire [11]. Their analysis focuses on establishing strong regret guarantees. In the

case of a zero-sum game this produces a simple proof of von Neumann’s min-max theorem and

a provable method of approximately solving a game. Specifically, given that both agents apply

(MWU), both the time average of the mixed strategy profiles as well as the utility of both agents

converge approximately to their Nash equilibrium values, where the approximation error can

become arbitrarily close to zero by choosing a sufficiently small step size. This result extends

straightforwardly to general no-regret dynamics, and, in fact, the other desirable properties of the

Nash equilibria such as polynomial-time tractability and convexity can be shown to readily follow

from this close connection between no-regret learning and equilibration.

In the game theoretic literature, this major result is typically celebrated by the shorthand

statement “MWU (no-regret dynamics) converges to equilibria in zero-sum games". Naturally,

this statement is not formally accurate as it indicates a much stronger result, i.e., that the actual

day-to-day behavior of MWU converges to equilibria. In spite of the classic nature of the problem,

we are not aware of any formal analysis of the asymptotic behavior of MWU even for a specific

instance of a zero-sum game (e.g., Matching Pennies).

To some extent, this lack of formal theoretical arguments is not surprising, as even a single

dimensional discrete time dynamical system can exhibit totally unpredictable, chaotic behavior that

is hard to characterize theoretically [15]. To make matters worse, recent results strongly suggest

that the behavior of MWU in 2x2 coordination/potential games
1
is impossibly hard to completely

characterize and predict. Specifically, [21] has shown that there exist specific instances of 2x2

potential games where the behavior of MWU exhibits bifurcations at critical values of its step size.

For small values the system always converges to equilibria whereas if we keep increasing the step

size eventually limit cycles emerge. For a different 2x2 potential game it is proven that MWU can

exhibit chaotic behavior. Simulations of this system suggest that as we increase the step size of

MWU, the system undergoes an infinite number of period doubling phase transitions. This behavior

is not universal in 2x2 potential games as there seem to exist instances where it is impossible to

induce chaotic behavior no matter how large we choose the step size to be. If the behavior MWU is

so complex in 2x2 potential games, why should we expect it to be any simpler in 2x2 zero-sum

games, let alone general constant-sum games?

Well, at least in the case of Matching Pennies, the simulations of MWU in Figure 1 seem to

suggest an intuitively clear story. Given any fixed step size, e.g., ϵ = .5 the dynamic converges

to the boundary with the rate of convergence being an increasing function of ϵ . For decreasing
step sizes, e.g., ϵt = 1/

3

√
t or 1/

√
t , the system moves away from the equilibrium along a spiral.

Interestingly enough, we get qualitatively different limit behavior depending on the rate of decrease

of the step size with the 1/
√
t rate encoding the boundary between the two. For slower decreasing

step sizes we still quickly converge to the boundary, whereas for faster rates the system converges

to a closed curve in the interior. With hindsight, this curve is the boundary of a K-L divergence ball.

1
These are games that lie on the antipode of zero-sum games. In coordination/potential games, the agents’ incentives are

strongly aligned and all agents act as if they wish to maximize a common potential function.



That is, this set contains all points at a fixed K-L divergence from the equilibrium. For the special

case of 1/
√
t we still diverge to the boundary. We will show that this intuitive picture largely carries

over to general zero-sum games, and furthermore present several extensions for different games

and dynamics.

1.1 Results
We begin by showing that the K-L divergence from any fully mixed Nash equilibrium (NE) to the

player strategies is increasing when players update their strategies using the MWU. This implies

that the set of Nash equilibria repel player strategies explaining the outward spirals we observe in

Figure 1. Building on this result, we establish that player strategies converge to the boundary for

any constant ϵ . Importantly, this analysis is robust. Our results extend to constant-sum polymatrix

games and even if individual players opt to use different values for ϵ . Moreover, our results apply

even to the setting where agents use shrinking step sizes. Formally, player strategies converge

to the boundary iff

∑∞
t=1

ϵ2

t = ∞ perfectly describing the contrast between the different phase

portraits in Figure 1.

Otherwise, in the event where the only Nash equilibrium of the game is on the boundary, the

K-L divergence may actually decrease in an iteration of MWU. Using different proof techniques we

establish that player strategies converge to the smallest face containing the set of Nash equilibria. In

that subspace divergence away from the set of NE applies for all nonequilibrium initial conditions

via the first argument, completing our picture for the behavior of the MWU dynamics.

Finally we consider other standard regret minimizing dynamics. We show how our results carry

over to the more general class of Follow-the-Regularized-Leader algorithms. In addition, our results

hold for the linear version of MWU
2
in skew-symmetric games.

1.2 Related Work
The study of learning dynamics in game theory has a long history dating back to the work of

Brown and Robinson [2, 26] on fictitious play in zero-sum games, which followed shortly after von

Neumann’s seminal work on zero-sum games [30, 31]. A good reference book cataloguing these

developments is [13]. The classic results about time-average convergence of no-regret dynamics

have been successfully generalized to include multiplayer extensions of network constant-sum

games [3, 4, 9].

Non-equilibrating dynamics in game theory. Although traditionally research in the area aims at

proving results about convergence of dynamics to equilibria, within the algorithmic game theory

(AGT) community, there has been a steady stream of results cataloguing interesting non-equilibrium

effects. Proving such non-equilibrium effects is typically rather hard, and results in this area typically

revolve around specific examples of games with a handful of agents and strategies. [7] showed

that MWU does not converge even in a time-average sense in the case of a specific 3x3 game.

[14] established non-convergence for a continuous-time variant of MWU, known as the replicator

dynamic, for a 2x2x2 game and show that as a result the system social welfare converges to states

that dominate all Nash equilibria. Balcan et al. [1] studied MWU in rank-1 games (i.e., games where

the summation of the payoff matrices of the two agents results in a rank-1 matrix). This games are

in some sense almost constant-sum, and the paper shows that there exist such games where not

even the time-average of MWU converges to equilibria. [21] proved the existence of Li-Yorke chaos

in MWU dynamics of 2x2 potential games.

2
This is a well known variant of MWU, where the weights are updated asw ← w (1+ϵ )u they are updated asw ← w (1+ϵu).
This variant enjoys strong connections to biological and evolutionary dynamics [5, 18, 19].



Continuous time dynamics in game theory. From the perspective of evolutionary game theory,

which typically studies continuous time dynamics, numerous nonconvergence results are known

but again typically for small games [27]. In [23, 24], the authors show that replicator dynamics, the

continuous time version of MWU exhibit a specific type of near periodic behavior, which is known

as Poincaré recurrence. Recently, [20] showed how to generalize this cyclic behavior for replicator

to more general continuous time variants of follow the regularized leader (FTRL) dynamics. Finally,

[17] showed that this arguments can also be adapted in the case of dynamically evolving games. The

papers in this category combine delicate arguments such as volume preservation and the existence

of constants of motions for the dynamics to establish cyclic behavior. In the case of discrete time

dynamics, such as the MWU, the system trajectories are more “rough” and these arguments which

are suited for smooth dynamics are no longer valid. Finally, [22] has put forward a program for

a general connection between game theoretic dynamics and concepts in topology that holds the

promise of becoming a universal tool for analyzing non-equilibrium dynamics in games.

Fast convergence to low regret states. It is widely known that the time-average of no-regret

algorithms converge to the set of coarse correlated equilibria. The "black-box" rate of convergence

is O(1/
√
t) and it is achieved by MWU with suitably shrinking step size without making any

assumptions about its environment. Recently, several authors have focused instead on obtaining

stronger regret guarantees for systems of learning algorithms in games. [6] and [25] developed

dynamics with a O(log t/t) regret minimization rate in two-player zero-sum games. [28] further

analyzed a recency biased variant of follow the regularized leader (FTRL) in more general games

and showed a O(t−3/4) regret minimization rate. The social welfare converges at a rate of O(1/t),
a result which was extended to standard versions of FRTL dynamics in [10]. Finally, [8] studies

the convergence properties of a specifically tailored dynamic in bilinear saddle problems and

show convergence of the daily behavior to equilibrium. Based on this, they develop novel training

algorithms for generative adversarial neural networks (GANs).

2 DEFINITIONS
2.1 Normal Form Games
We begin with basic definitions from game theory. A finite normal-form game Γ ≡ Γ(N ,S,u)
consists of a set of players N = {1, ...,N } where player i may select from a finite set of actions or

pure strategies Si . Each player has a payoff function ui : S ≡
∏

i Si → R assigning reward ui (s) to

player i . It is common to describe ui with a payoff tensor A(i) where ui (s) = A(i)s .

Players are also allowed to use mixed strategies xi = (xisi )si ∈Si ∈ ∆(Si ) ≡ Xi . The set of mixed

strategies is X =
∏

i Xi . A strategy is fully mixed if xisi > 0 for all si ∈ Si and i ∈ N . Individuals

the payoff of a mixed strategy linearly using expectation. Formally,

ui (x) =
∑
s ∈S

ui (s)
∏
i ∈N

xisi . (1)

We also introduce additional notation to express player payouts for brevity in our analysis

later. Let visi (x) = ui (si ;x−i )
3
denote the reward i receives if i opts to play pure strategy si when

everyone else commits to their strategies described by x . This results in ui (x) = ⟨vi (x),xi ⟩. Let
Pi (x) = visi (x) with probability xisi be a random variable corresponding to the payout for player i
given the mixed profile x . Using this definition, only player i introduces randomness to i’s reward
and x−i is treated as a deterministic strategy. We can then write ui (x) = E[Pi (x)].

3(si ; x−i ) denotes the strategy x after replacing xi with si .



The most commonly used solution concept for games is the Nash equilibrium. A Nash equilibrium

(NE) is a strategy x∗ ∈ X where no player can do better by deviating from x∗i . Formally,

ui (x
∗
i ;x∗−i ) ≥ ui (xi ;x

∗
−i ) for all xi ∈ Xi and i ∈ N . (NE)

2.2 2-Player and Polymatrix Constant-Sum Games
The most commonly studied class of games are 2-player zero-sum games. A two-player zero-sum

game Γ is such that N = {1, 2} and u1 + u2 = 0. Letting u ≡ u1 = −u2, the value of a 2-player

zero-sum game is

uΓ = max

x1∈X1

min

x2∈X2

u(x1;x2) = min

x2∈X2

max

x1∈X1

u(x1;x2) (2)

where equality comes from von Neuman’s min-max theorem [30]. The solutions to (2) are the set

of Nash equilibria of the game.

Constant-sum games are closely related to zero-sum games. A constant-sum gamewith parameter

c is such that u1 + u2 = c . By shifting either players utility function, a two-player constant-sum

game can be transformed into a zero-sum game without changing the set of Nash equilibria.

Also of interest in this paper are games featuring a network of competitors. An N -player pairwise

constant-sum polymatrix game Γ consists of an interaction graph G = G(N , E) where the set
of nodes N represent of players and where {i, j} is an edge in E only if i and j compete in a

constant-sum game with parameter ci j .
Player i’s utility, ui is now expressed as a sum of the utilities gained in the games i plays in the

graph G. Formally, let ui j = ci j − uji be utility gained in i’s game against j and

ui (x) =
∑

j :{i, j }∈E

ui j (x). (3)

Without loss of generality we can assume G is a complete graph by letting ui j (x) = 0 for all x if i
and j do not compete. Under this assumption, we can write the simpler ui (x) =

∑
j ∈N\{i } ui j (x).

2.3 Bregman Divergence from a Nash Equilibrium
Let x∗ ∈ X be a Nash equilibrium and let x ∈ X be an arbitrary strategy profile. Then the Bregman

divergence from x∗ to x with respect to convex function h is

Dh(x
∗ | |x) = h(x∗) − h(x) − ⟨∇h(x),x∗ − x⟩. (Bregman Divergence)

A convex function we will be particularly interested in the course of this paper is the negative

entropy function, h(x) =
∑

si ∈Si xisi ln(xisi ). The Bregman divergence for this function is referred

to as the Kullback-Leibler (K-L) divergence and is given by

DKL(x
∗ | |x) =

∑
i ∈N

∑
si ∈Si

x∗isi

(
lnx∗isi − lnxisi

)
(K-L Divergence)

2.4 Follow-the-Regularized-Leader

x ti = argmax

xi ∈Xi
η
t−1∑
s=0

ui (xi ;x
s
−i ) − h(xi ) (FTRL)



If the negative entropy function is used as the regularizer, then FTRL results in the exponential

weighted update algorithm given by

x tisi =
x t−1

isi (1 + ϵ)
visi (x

t−1)∑
s ′i ∈Si

x t−1

is ′i
(1 + ϵ)

vis′i
(x t−1)

=
x tisi (1 + ϵ)

visi (x
t−1)

E
[
(1 + ϵ)Pi (x t−1)

] (MWUe )

where ϵ = eη − 1.

We will also consider the Linear Multiplicative Weight Update algorithm. While Linear MWU is

not a FTRL algorithm, it is a regret minimizing algorithm for decaying values of ϵ . It is given by

x tisi =
x t−1

isi (1 + ϵvisi (x
t−1))∑

s ′i ∈Si
x t−1

is ′i
(1 + ϵvis ′i (x

t−1))
=

x t−1

isi (1 + ϵvisi (x
t−1))

1 + ϵui (x t−1)
(MWUℓ)

3 CONVERGENCE TO BOUNDARY IN MULTIPLICATIVE WEIGHTED UPDATE
We start our analysis by proving the repelling property of Nash equilibria.

Theorem 3.1. The K-L divergence between player strategies and any fully mixed Nash equilibrium
is non-decreasing when strategies are updated with (MWUe ) for any 2-player constant-sum game.

Proof. Plugging (MWUe ) into (K-L Divergence), we obtain

DKL(x
∗ | |x t ) =

∑
i ∈N

∑
si ∈Si

x∗isi

(
lnx∗isi − lnx tisi

)
(4)

=
∑
i ∈N

∑
si ∈Si

x∗isi

(
lnx∗isi − lnx t−1

isi −visi (x
t−1) ln(1 + ϵ) + lnE

[
(1 + ϵ)Pi (x

t−1)
] )

(5)

= DKL(x
∗ | |x t−1) +

∑
i ∈N

∑
si ∈Si

x∗isi

(
lnE

[
(1 + ϵ)Pi (x

t−1)
]
−visi (x

t−1) ln(1 + ϵ)
)

(6)

= DKL(x
∗ | |x t−1) +

∑
i ∈N

(
lnE

[
(1 + ϵ)Pi (x

t−1)
]
− ui (x

∗
i ;x t−1

−i ) ln(1 + ϵ)
)

(7)

= DKL(x
∗ | |x t−1) +

∑
i ∈N

(
lnE

[
(1 + ϵ)Pi (x

t−1)
]
− ui (x

t−1) ln(1 + ϵ)
)

(8)

The equlibriumx∗ is fullymixed implyingui (x
∗
i ,x

t−1

−i ) = ui (x
∗) and

∑
i ∈N ui (x

∗
i ;x t−1

−i ) =
∑

i ∈N ui (x
∗) =∑

i ∈N ui (x
t−1) since the game is constant-sum. Therefore in the t th iteration of (MWUe ) the K-L

divergence changes by

DKL(x
∗ | |x t ) − DKL(x

∗ | |x t−1) =
∑
i ∈N

lnE
[
(1 + ϵ)Pi (x

t−1)−ui (x t−1)
]

(9)

≥
∑
i ∈N

E
[
Pi (x

t−1) − ui (x
t−1)

]
ln (1 + ϵ) = 0 (10)

where the last inequality follows from Jensen’s Inequality. �

Definition 3.2. Strategy si ∈ Si is essential iff there is a Nash equilibrium x∗ where x∗isi > 0.

It is straightforward to check that there is no fully mixed Nash equilibrium iff there is a non-

essential strategy. The backward direction follows by definition, whereas the forward follows from

the convexity of the equilibrium set.

We are now ready to prove our main result.



Theorem 3.3. For almost every 2-player constant-sum game, there exists ϵ0 > 0, such that as long
as all agents use (MWUe ) with ϵ < ϵ0, all non-equilibrium initial conditions converge to the boundary.
Specifically, in any game that has at least one interior NE, for all ϵ , all non-equilibrium initial

conditions converge to the boundary. In any game with no interior NE, as long as it has a unique NE (a
genericity assumption), all non-equilibrium initial conditions converge to the minimal subspace that
contains all essential strategies.

We present the proof of convergence in two parts. First we show that if there is a fully mixed

Nash equilibrium then the K-L divergence between the Nash equilibrium and the player strategies

goes to infinity implying convergence to the boundary. This portion of the proof works for any ϵ .
In the second part of the proof, for the case of games with non-interior Nash equilibria, we show

that under the generic assumption that the zero-sum game in question has a unique equilibrium
4

the probability of playing any non-essential strategy goes to 0 completing the proof of the theorem.

Proof of Theorem 3.3. First suppose there is a fully mixed Nash equilibrium x∗. By Lemma 3.1,

DKL(x
∗ | |x t ) is non-decreasing and there is a compact set B such that x t ∈ B for all t and x∗ < B.

For contradiction, suppose x t does not converge to the boundary. This implies there existsw > 0

such DKL(x
∗ | |x t ) ≤ w for all t since DKL(x

∗ | |x t ) is non-decreasing. Thus we may assume that B
also excludes the boundary. (10) is saturated only if x t = x∗ or x t is on the boundary. Therefore

DKL(x
∗ | |x t ) −DKL(x

∗ | |x t−1) > 0 for all x t since x t ∈ B. DKL(x
∗ | |x t ) −DKL(x

∗ | |x t−1) is continuous

with respect to x t and each x t is in the compact B. Thus, there is a constant d > 0 such that

DKL(x
∗ | |x t ) − DKL(x

∗ | |x t−1) ≥ d . This implies

lim

t→∞
DKL(x

∗ | |x t ) = DKL(x
∗ | |x0) +

∞∑
t=1

(
DKL(x

∗ | |x t ) − DKL(x
∗ | |x t−1)

)
(11)

≥ DKL(x
∗ | |x0) +

∞∑
t=0

d = ∞ (12)

and thus we reach a contradiction.

Now suppose there is no fully mixed Nash equilibrium and that player i has a non-essential
strategy si . Iteratively, the update (MWUe ) can be written as

x tisi =
x0

isi (1 + ϵ)
t ·visi (x̄

t−1)

E
[
(1 + ϵ)t ·Pi (x̄ t−1)

] (13)

where x̄ t =
∑t

s=0

x s
t+1

is the time average of player strategies and where the expectation is taken with

respect to x t−1

i . Since (MWUe ) has anO(ϵ) time-average regret, x̄ t converges to aO(ϵ)-approximate

Nash equilibrium.
5
Since for ϵ → 0 the set of O(ϵ)-approximate Nash equilibria converges to the

set of Nash equilibria, given any open neighborhood around the set of Nash equilibria we can

choose an appropriate ϵ so that all the O(ϵ)-approximate Nash equilibria are contained in that

neighborhood.

4
The set of zero-sum games with a unique equilibrium is open and dense in the space of all zero-sum games. Moreover, this

slightly stronger result is also true. Within the set of all zero-sum games, the complement of the set of zero-sum games with

unique equilibrium is closed and has Lebesgue measure zero [29].

5
This is a well known fact. By theO (ϵ )-regret property of the second agent, the time average utility of the first agent cannot

be larger than uΓ +O (ϵ ). By the O (ϵ )-regret property of the first agent, his utility for deviating to any strategy is at most

O (ϵ ) greater that his current time average utility which is at most uΓ +O (ϵ ). Specifically, his expected utility at x̄ t when
both agents play their time average strategies is at most uΓ +O (ϵ ). A similar argument from the perspective of the second

agent produces the analogous lower bound. This strategy profile is thus an O (ϵ ) equilibrium of the game.



For this portion of the proof we assume without loss of generality that ui (x
∗) = 0. Almost every

constant-sum game has a unique Nash equilibrium x∗ [29]. Moreover, by [20] we have that that

for every non-essential strategy i , visi (x
∗) < ui (x

∗) = 0. Let δ = visi (x
∗) < 0. By the continuity of

payoffs we have that for any mixed strategy profile y in a small enough neighborhood around the

equilibrium set, visi (y) < 2δ/3 whereas for any strategy s ′i in the equilibrium support vis ′i (y) > δ/3.
Let ϵ0 in the statement of the theorem be such that allO(ϵ0)-approximate Nash equilibria as strictly

contained in the above neighborhood. We have that t ·
(
visi (x̄

t ) −vis ′i (x̄
t )
)
→ −∞ as t →∞. As

a result, x tisi /x
t
is ′i
→ 0 as t → ∞ and since x tis ′i

is upper bounded by 1, x tisi → 0 as t → ∞. This

completes the proof of the theorem. �

3.1 Exponential MWU Convergence in Polymatrix Games
Theorem 3.4. For every polymatrix constant-sum game with a fully mixed Nash equilibrium, every

(non-equilibrium) initial strategy converges to the boundary when updated with (MWUe ) for any
ϵ > 0.

Let x denote an arbitrary strategy profile. Observe that∑
i ∈N

ui (x
∗
i ;x−i ) =

∑
i ∈N

∑
j ∈N\{i }

ui j (x
∗
i ;x j ) (14)

=
∑
j ∈N

∑
i ∈N\{j }

ui j (x
∗
i ;x j ) (15)

=
∑
j ∈N

∑
i ∈N\{j }

ui j (x
∗) (16)

=
∑
i ∈N

ui (x
∗) (17)

=
∑
i ∈N

ui (x) (18)

The proof of Theorem 3.4 then follows analogously to Theorems 3.1 and 3.3.

3.2 Exponential MWU with Different Step Sizes
Players may opt to use a different value of ϵ in each iteration of (MWUe ). For instance, a common

selection is ϵt =
1√
t
which guarantees vanishing regret. We extend our results to this setting.

x tisi =
x t−1

isi (1 + ϵt )
visi (x

t−1)

E
[
(1 + ϵt )Pi (x

t−1)
] (MWU ϵt

e )

Theorem 3.5. For every polymatrix constant-sum game with a fully mixed Nash equilibrium,
every (non-equilibrium) initial strategy converges to the boundary when updated with (MWU ϵt

e ) iff∑∞
t=1

ϵ2

t = ∞.

The proof of Theorem 3.5 requires showing that the K −L divergence increases by approximately∑
i ∈N

Var [Pi (x t )]
2

ϵ2

t . The remainder of the proof then follows analogously to Theorem 3.3. The details

of this proof appear in Appendix A.

In practice, there is no reason all players update their weights using the same ϵt , i.e., players
i may instead use weight ϵit . As we show next, the result holds even if players all use different

values for ϵt under certain conditions.



Theorem 3.6. The statement of Theorem 3.5 holds even if players are allowed to select different
values for ϵit , as long as

∏
k∈N\{i } ln(1+ϵkt )∑
j∈N ln(1+ϵjt )

is time invariant for all i ∈ N .

The proof of Theorem 3.6 requires examining

∑
i ∈N

∏
k∈N\{i } ln(1+ϵkt )∑
j∈N ln(1+ϵjt )

DKL(x
∗
i | |x

t
i ) ≤ c ·DKL(x

∗ | |x t )

for some constant c > 0 and then follows analogously to Theorems 3.1 and 3.5. As a corollary, for

arbitrary, fixed but possibly different step-sizes ϵi (MWUe ) converges to the boundary.

While Theorem 3.6 guarantees there are many possible selections of ϵit that guarantee conver-
gence of the boundary, we also show that ϵit may be selected so that the K-L divergence between

player strategies and any fully mixed Nash equilibrium may actually decrease.

Proposition 3.7. The K-L divergence between player strategies and any fully mixed Nash equilib-
rium may decrease when strategies are updated with (MWUe ) if players are allowed to select values
for ϵit arbitrarily.

The proof of Proposition 3.7 appears in Appendix B.

4 EXTENSIONS
In this section we examine other regret-minimizing dynamics. Specifically, we consider (i) Follow-

the-Regularized-Leader algorithms (FTRL) and (ii) the linear version of MWU (MWUℓ) in strictly

adversarial settings and establish divergence away from Nash equilibria.

4.1 FTRL
Theorem 4.1. For every constant-sum game with a fully mixed Nash equilibrium and every (non-

equilibrium) initial strategy, the Bregman divergence from the NE will strictly increase in every iteration
when player strategies are updated with (FTRL) and a strictly convex regularizer, as long as the updated
strategies are fully mixed.

Proof. The KKT optimality conditions for (FTRL) are

∇hi (x
t
i ) = η

t−1∑
s=0

vi (x
s
−i ) − λ

t1 + δ t∑
si ∈Si

x tisi = 1

xisi ≥ 0

δ t ≥ 0

⟨δ t ,x ti ⟩ = 0

(FTRL KKT Conditions)

where λt ∈ R is the variable associated with the constraint

∑
si ∈Si x

t
isi = 1 and δ t ∈ R |Si |

≥0
is the

vector associated with the constraints xisi ≥ 0 for all si ∈ Si . Therefore,



Dh(x
∗
i | |x

t
i ) = h(x

∗
i ) − h(x

t
i ) − ⟨∇h(x

t
i ),x

∗
i − x

t
i ⟩ (19)

= h(x∗i ) − h(x
t
i ) − ⟨η

t−1∑
s=0

vi (x
s
−i ) − λ

t1 + δ t ,x∗i − x
t
i ⟩ (20)

= h(x∗i ) − h(x
t
i ) + η

t−1∑
s=0

(
ui (x

t
i ,x

s
−i ) − ui (x

∗
i ,x

s
−i )

)
− ⟨δ t ,x∗i ⟩ (21)

≤ h(x∗i ) − h(x
t
i ) + η

t−1∑
s=0

(
ui (x

t
i ,x

s
−i ) − ui (x

∗)
)
. (22)

Now suppose x ti is fully mixed implying δ t = 0 and (22) holds with equality. Through similar

reasoning and by strict convexity of h,

h(x t−1

i ) > hi (x
t
i ) + ⟨∇hi (x

t
i ),x

t−1

i − x ti ⟩ (23)

= hi (x
t
i ) + η

t−1∑
s=0

(
ui (x

t−1

i ,x
s
−i ) − ui (x

t
i ;xs−i )

)
(24)

Combining (22) and (24), we have

Dh(x
∗ | |x t ) − Dh(x

∗ | |x t−1) =
∑
i ∈N

(
Dh(x

∗
i | |x

t
i ) − Dh(x

∗
i | |x

t−1

i )
)

(25)

>
∑
i ∈N

η
(
ui (x

t−1) − ui (x
∗)
)
= 0 (26)

completing the proof of the theorem. �

Theorem 4.1 guarantees that when the strategy and its update are fully mixed the update will

move further from the Nash equilibrium explaining the outward spirals in Figure 1. Moreover, it

guarantees that the Bregman divergence continues to increase when the current strategy isn’t fully

mixed as long as its update is. Let r > 0 be the maximum value such that Dh(x
∗ | |x) ≥ r for all x on

the boundary. If x t−1
is on the boundary, then either (1) x t is on the boundary and Dh(x

∗ | |x t ) ≥ r
by definition or (2) x t is fully mixed and Dh(x

∗ | |x t ) > Dh(x
∗ | |x t−1) ≥ r by Theorem 4.1. Thus,

once the updated strategies hit the boundary, the strategies will never again enter the smallest ball

centered at the Nash equilibrium that intersects with the boundary.

Theorem 4.2. For every 2-player constant-sum game with a fully mixed equilibrium, if all agents
use (FTRL) with fixed η and a strongly convex regularizer, any (non-equilibrium) initial strategies
come arbitrarily close to the boundary infinitely often.

Proof. For contradiction, suppose there exists a T such that that x t never comes close to

boundary and there is aw such that Dh(x
∗ | |x t ) ≤ w for all t ≥ T . This implies x tisi > 0 and that we

can disregard the constraint xisi ≥ 0 in (FTRL) for all t ≥ T . By Theorem 4.1 there exists an r > 0

such that Dh(x
∗ | |x t ) ≥ r for all t and therefore there is a compact B excluding x∗ and the boundary

such that x t ∈ B for all t ≥ T .
Let

ˆh, û, and v̂ be the functions obtained by plugging xisi = 1 −
∑

s ′i ∈Si \{si }
xisi into h, u, and v

respectively for an arbitrarily selected si . Once this substitution is made, x t is determined by

x ti = argmaxη
t−1∑
s=0

ûi (xi ;x
s
−i ) −

ˆh(xi ) (Unconstrained FTRL)



where x tisi is assigned 1 −
∑

s ′i ∈Si \{si }
xisi . This function has KKT optimality conditions

∇ ˆh(x t+1

i ) = η
t∑

s=0

v̂i (x
s
−i ) = η∇

ˆh(x ti ) + ηv̂i (x
t
−i ). (27)

Thus x t+1
is uniquely determined from x t and therefore f (x t ) = | |x t+1 − x t | |2

2
is well-defined.

Since x t is fully mixed, x t = x t+1
if and only if x t = xs for all s ≥ t . This only occurs if x t = x∗

which cannot occur since x t ∈ B and therefore f (x t ) > 0 for all t ≥ T . By compactness of B, there
exists a d > 0 such that f (x t ) ≥ d for all t ≥ T .
If h is strongly convex with parameter m > 0, then the proof of Theorem 4.1 can readily be

modified to show that the divergence increases by at leastm | |x t+1 − x t | |2
2
in iteration t of (FTRL)

since x t is always fully mixed for t ≥ T . Thus,

lim

t→∞
Dh(x

∗ | |x t ) = Dh(x
∗ | |xT ) +

∞∑
t=T

(
Dh(x

∗ | |x t+1) − Dh(x
∗ | |x t )

)
(28)

≥ Dh(x
∗ | |xT ) +

∞∑
t=T

m | |x t+1 − x t | |2
2

(29)

≥ Dh(x
∗ | |xT ) +

∞∑
t=T

md = ∞ (30)

a contradiction. �

Theorems 4.1 and 4.2 imply that if the regularizer used in (FTRL) guarantees x t will be fully
mixed for each t then x t converges to the boundary. An example of such a regularizer is the

negative entropy function yielding the update rule (MWUe ). However, not all regularizers come

with this guarantee. For instance in Figure 2, we see that for the regularizer h(x) = | |x | |2
2
(yielding

the Gradient Descent algorithm) that player strategies move outward until they collide with the

boundary. After this initial collision however, we see that the strategies may once again become

fully mixed until they eventually again hit the boundary. Interestingly, we see that player strategies

still appear to converge to the boundary in the absolute sense. However, the proof techniques we

established for (MWUe ) cannot capture this simply because the Bregman divergence may decrease

when player strategies are on the boundary.

Heads, HeadsTails, Heads

Heads, TailsTails, Tails

Fig. 2. Matching Pennies updated 1000 times with (FTRL), Regularizer h(x) = | |x | |2
2
and η = .08.

Similar to our results for (MWUe ) Theorem 4.2 holds in polymatrix games even when individuals

select different values of η so long as

∏
k∈N\{i } ηkt∑
j∈N ηjt

is time invariant and the selection of η can

guarantee arbitrarily low regret. The proof of the results follow analogously to Theorems 3.4, 3.6,



and 4.2. In addition, Theorem 4.2 holds even if players use different regularizers. The proof of

Theorems 4.1 only makes use of the convexity of the regularizer.

Theorem 4.3. For almost every 2-player constant-sum game with no fully mixed equilibria, there
exists η0 > 0, such that as long as all agents use (FTRL) with η < η0 any (non-equilibrium) initial
strategies converge to the boundary.

This proof follows similarly to the second part of Theorem 3.3 and is deferred to Appendix C.

4.2 Linear MWU
The linear variant of MWU (MWUℓ) is similar to the (MWUe ) in that they have the same first

order approximation for the update in player strategies and thus we may expect that the two

algorithms should behave similarly. However, as shown in Figure 3, the algorithms can result

in player strategies evolving in very different ways. Figure 3 suggests that (MWUℓ) still implies

convergence to the boundary.

x21

x11

x12

(a) Linear Update

x21

x11

x12

(b) Exponential Update

Fig. 3. Player Strategies Spiraling Outwards for the Zero-Sum Game with Player 1 Payoff Matrix

(
1 −1

2 −2

−1 1

)
with ϵ = .5.

We explore convergence of (MWUℓ) in this section. We establish that the proof techniques used

in Theorem 3.3 combined with the K-L divergence are insufficient for showing convergence to

the boundary in (MWUℓ) – The K-L divergence may actually decrease when players update their

strategies with (MWUℓ). The proof techniques are however sufficient to guarantee convergence to

the boundary in the large class of zero-sum games, skew-symmetric games. A two-player game is

skew-symmetric if both players have the same payoff matrix. Rock, Paper, Scissors is a classical

example of a skew-symmetric game.

Theorem 4.4. Let Γ be a 2-player constant-sum game that admits an interior Nash equilibrium.
If both players update their strategies according to (MWUℓ) in iteration t , then the K-L divergence
increases by

∑
i ∈N

(
ln

(
1 + ϵui (x

t−1)
)
−

∑
si ∈Si x

∗
i ln

(
1 + ϵvisi (x

t−1)
) )
.

The proof of Theorem 4.4 follows analogously to Theorem 3.1.

Proposition 4.5. There exists a 2-player zero-sum game Γ with an interior point equilibrium and
a fully mixed strategy x0 so that the K-L divergences decreases whenever players update strategies
with (MWUℓ) with a sufficiently small ϵ .



Proof. Consider the zero-sum game with payoff matrix A1 =

(
3 −2

−1 4

)
. The unique Nash

equilibrium of this game is x∗
1
= (1/2, 1/2) and x∗

2
= (3/5, 2/5). By Theorem 4.4, the change in KL

divergence after one iteration given the initial strategies x0

1
= (1/4, 3/4) and x0

2
= (1/3, 2/3) is

ln

(
1 +

5

3

ϵ

)
+ ln

(
1 −

5

3

ϵ

)
−

1

2

ln

(
1 −

1

3

ϵ

)
−

1

2

ln

(
1 +

7

3

ϵ

)
−

2

5

ln

(
1 −

5

2

ϵ

)
< 0 (31)

for ϵ / 0.1736. �

Theorem 4.6. Let Γ be a 2-player skew-symmetric game that admits an interior Nash equilibrium.
Further suppose that x0

1
= x0

2
is a fully mixed non-equilibrium initial strategy and both players update

their strategies according to (MWUℓ) then x t converges to the boundary. In the case of time evolving
ϵt , its (MWU ϵt

ℓ
) variant converges to the boundary iff

∑∞
t=1

ϵ2 = ∞.

Since the game is skew-symmetric and since players are playing the same strategies, u1(x) =
u2(x) = 0 for any strategy x . Therefore in an iteration of (MWUℓ) the K-L divergence increases by

−2

∑
s1∈S1

x∗
1

ln

(
1 + ϵv1s1

(x t−1)
)
. The proof then follows analogously to Theorem 3.5 and obtains a

similar rate of convergence to the boundary.

5 CONCLUSIONS
Our results suggest that the behavior of MWU (as well as of most classic no-regret dynamics) is

more intricate than what is suggested by regret-minimizing algorithms’ guarantee of “convergence

to equilibrium”. Even though the time-average of strategies converge, actual player strategies are

repelled away from the equilibrium. If equilibria are predictive and we expect individual strategies

to approach equilibria over time then the standard no-regret approach to updating strategies via

MWU is inadequate and we must consider other equilibrium-seeking algorithms. Our work opens

up the possibility of a much tighter understanding of the true, realized behavior of such dynamics

in many contexts and raises interesting questions from a behavioral game theory standpoint.

For example, what type of learning dynamics do people apply in practice? Can we exploit our

understanding of the shape of these trajectories (e.g. the geometry of the limit cycles) to perform

behavioral model fitting?
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A PROOF OF THEOREM 3.5
The first proof we present is a bound on the generalized binomial coefficient which will allow us to

bound the change in K-L divergence in each iteration of (MWU ϵt
e ).

Lemma A.1. The generalized binomial coefficient
(x
k

)
= x(x − 1) · · · (x − k + 1) is such that(x

k

)
=

∑k
j=1

ajkx
j where

∑k
j=1
|ajk | = k!.

Proof. Recursively, it follows that akk = 1, a1k = (1−k)a1,k−1 and ajk = (1−k)aj,k−1 +aj−1,k−1.

We now proceed by induction. The statement of the lemma trivially holds for k = 1. Assume the

result hold for k − 1. Then by the the inductive hypothesis,

k∑
j=1

|ajk | = |akk | + |a1k | +

k−1∑
j=2

|ajk | (32)

= 1 + (k − 1)|a1,k−1 | +

k−1∑
j=2

(
(k − 1)|aj,k−1 | + |aj−1,k−1 |

)
(33)

= 1 + (k − 1)

k−1∑
j=1

|aj,k−1 | +

k−1∑
j=1

|aj,k−1 | − |ak−1,k−1 | (34)

= 1 + (k − 1)(k − 1)! + (k − 1)! − 1 = k! (35)

completing the proof of the lemma. �

LemmaA.2. Let Γ be a gamewith a fullymixed Nash equilibrium. Letb = max

{
1, max

s,s ′∈S
{u1(s) − u1(s

′)}

}
and suppose ϵt ≤ 1

2b . If player’s update their strategies according to (MWU ϵt
e ) then DKL(x

∗ | |x t ) −

DKL(x
∗ | |x t−1) ≤

∑
i ∈N

Var [Pi (x t )]
2

ϵ2

t + 4b3ϵ3

t .

Proof. Let ajk be as described in Lemma A.1. By Theorem 3.1,

DKL(x
∗ | |x t ) − DKL(x

∗ | |x t−1) =
∑
i ∈N

lnE
[
(1 + ϵt )

Pi (x t )−ui (x t )
]

(36)

=
∑
i ∈N

lnE

[
∞∑
k=0

(
Pi (x

t ) − ui (x
t )

k

)
ϵkt

]
(37)

=
∑
i ∈N

ln

©«1 +
Var [Pi (x

t )]

2

ϵ2

t +

∞∑
k=3

∑k
j=1

ajkE
[ (
Pi (x

t ) − ui (x
t )
) j ]

k!

ϵkt
ª®®¬.

(38)

Next observe that E
[
(Pi (x

t ) − ui (x
t ))j

]
≤ b j ≤ bk for k ≥ j. Therefore,



DKL(x
∗ | |x t ) − DKL(x

∗ | |x t−1) ≤
∑
i ∈N

ln

(
1 +

Var [Pi (x
t )]

2

ϵ2

t +

∞∑
k=3

∑k
j=1
|ajk |b

k

k!

ϵkt

)
(39)

=
∑
i ∈N

ln

(
1 +

Var [Pi (x
t )]

2

ϵ2

t +

∞∑
k=3

bkϵkt

)
(40)

=
∑
i ∈N

ln

(
1 +

Var [Pi (x
t )]

2

ϵ2

t +
b3ϵ3

t

1 − bϵt

)
(41)

≤
∑
i ∈N

ln

(
1 +

Var [Pi (x
t )]

2

ϵ2

t + 2b3ϵ3

t

)
(42)

following from the Taylor series expansion of
y3

1−y and since ϵt ≤
1

2b . Furthermore ln(1+y) ≤ y and

DKL(x
∗ | |x t ) − DKL(x

∗ | |x t−1) ≤
∑
i ∈N

(
Var [Pi (x

t )]

2

ϵ2

t + 2b3ϵ3

t

)
(43)

=
∑
i ∈N

Var [Pi (x
t )]

2

ϵ2

t + 4b3ϵ3

t (44)

completing the proof of the lemma. �

Lemma A.2 is sufficient to give the “only if” portion of Theorem 3.5. To obtain the “if” portion,

we need a similar lower bound.

LemmaA.3. Let Γ be a gamewith a fullymixed Nash equilibrium. Letb = max

{
1, max

s,s ′∈S
{u1(s) − u1(s

′)}

}
and suppose ϵt ≤ 1

2b . If player’s update their strategies according to (MWU ϵt
e ) then DKL(x

∗ | |x t ) −

DKL(x
∗ | |x t−1) ≥

∑
i ∈N

Var [Pi (x t )]
4

ϵ2

t − 2b3ϵ3

t .

Proof. Following symmetrically with the proof of Lemma A.2 for ϵt ≤
1

2b ,

DKL(x
∗ | |x t ) − DKL(x

∗ | |x t−1) ≥
∑
i ∈N

ln

(
1 +

Var [Pi (x
t )]

2

ϵ2

t − 2b3ϵ3

t

)
(45)

≥
∑
i ∈N

Var [Pi (x
t )]

4

ϵ2

t − 2b3ϵ3

t (46)

since ln(1 + y) ≥
y
2
completing the proof of the lemma. �

The statement of Lemma A.3 can be tightened to
Var [Pi (x t )]

2c ϵ2

t for any c > 1 by taking ϵt
sufficiently small. However, Lemma A.3 as written is sufficient for the proof of Theorem 3.5.

Proof of Theorem 3.5. We show the result only for 2-player games. The extension to polymatrix

games follows in the same fashion as Theorem 3.4. We begin by showing player strategies do not

converge to the boundary if

∑∞
t=1

ϵ2

t < ∞. Let b be as defined in Lemma A.2. Since the sum is finite,

there must be a T such that ϵt ≤
1

2b for all t ≥ T . Any fully mixed strategy updated by (MWU ϵt
e )

remains fully mixed and therefore DKL(x
∗ | |xT−1) < ∞. Thus,



lim

t→∞
DKL(x

∗ | |x t ) = DKL(x
∗ | |xT−1) +

∞∑
t=T

(
DKL(x

∗ | |x t ) − DKL(x
∗ | |x t−1)

)
(47)

≤ DKL(x
∗ | |xT−1) +

∞∑
t=T

(∑
i ∈N

Var [Pi (x
t )]

2

ϵ2

t + 4b3ϵ3

t

)
(48)

≤ DKL(x
∗ | |xT−1) +

∞∑
t=T

(∑
i ∈N

b2

2

ϵ2

t + 4b3ϵ2

t

)
< ∞ (49)

by Lemma A.2, since Var [Pi (x
t )] ≤ b2

, and

∑∞
t=1

ϵ2

t < ∞. Thus player strategies move outward but

do not converge to the boundary completing the first part of the proof.

We now show that player strategies converge to the boundary if

∑∞
t=1

ϵ2

t = ∞. Let x
∗
be a

fully mixed Nash equilibrium. For contradiction, suppose player strategies do not converge to

the boundary and there is a w > 0 such that DKL(x
∗ | |x t ) < w for all t . Thus, as in the proof of

Theorem 3.3, there exists a compact B such that x t ∈ B for all t but B excludes the boundary and x∗.∑
i ∈N Var [Pi (x)] > 0 for all x ∈ B and since B is compact and Var [Pi (x)] is continuous in x , there

exists a d > 0 such that

∑
i ∈N Var [Pi (x

t )] ≥ d for all t .
If there are infinitely many t such that ϵt > min{ 1

2b ,
d

16b3
} then the proof follows identically to

Theorem 3.3 and we may assume there exists aT such that ϵt ≤ min{ 1

2b ,
d

16b3
} for all t ≥ T . Finally,

lim

t→∞
DKL(x

∗ | |x t ) = DKL(x
∗ | |xT−1) +

∞∑
t=T

(
DKL(x

∗ | |x t ) − DKL(x
∗ | |x t−1)

)
(50)

≥ DKL(x
∗ | |xT−1) +

∞∑
t=T

(∑
i ∈N

Var [Pi (x
t )]

4

ϵ2

t − 2b3ϵ3

t

)
(51)

≥ DKL(x
∗ | |xT−1) +

∞∑
t=T

(
d

4

ϵ2

t −
d

8

ϵ2

t

)
= ∞ (52)

by Lemma A.3 and since ϵt ≤
d

16b3
and

∑∞
t=1

ϵ2

t = ∞. This is a contradiction, completing the proof

of the theorem. �

B PROOF OF PROPOSITION 3.7
To show this proposition, we actually show that for almost every 2x2 constant-sum game with a

fully mixed Nash equilibria x∗ that there exists {{ϵit }i ∈N}}
∞
t=1

so that limt→∞ x
t → x∗

The process for achieving this is quite simple; it requires at most 4 unique selections for ϵit to
come arbitrarily close to x∗. Moreover if we allow ϵit to be arbitrarily large we can come arbitrarily

close to the Nash equilibrium in 3 steps with 3 unique selections for ϵit . Rather than give the full

proof, we describe selection process used to achieve convergence to x∗.
If u1(x

1) > u1(x
∗) then player 1 is profiting (relative to the Nash strategy) and selects ϵ1t = 0 so

that strategy does not change. The game is constant-sum and u2(x
1) < u2(x

∗) implying player 2 is

losing utility. He assigns ϵit = c for some c > 0. MWU is myopic and after some number of iterations

u2(x
T ) −u2(x

∗) becomes positive. In a 2x2 game ui (x
T ) = ui (x

∗) if and only if at least one player is

playing a Nash strategy. Therefore by re-selecting ϵ2T so that u2(x
T ) is arbitrarily close to u2(x

∗),

he also ensures that xT
2
is arbitrarily close to x∗

2
. Moreover, he can do this so that u2(x

T ) > u2(x
∗).

Since u2(x
T ) > u2(x

∗), u1(x
T ) < u1(x

∗) and the players can repeat a symmetric process so that for

T ′ > T , xT
′

1
is arbitrarily close to x∗

1
. Moreover, since ϵ2t = 0 for all t ∈ {T + 1, ...,T ′}, xT

2
= xT

′

2
and

both players are submitting a strategy arbitrarily close to the Nash equilibrium.



Since this process requires forui (x
t ) , ui (x

∗), it may require one additional step at the beginning

if x0

i = x∗i for either player. However, this process is trivial since almost every selection of ϵi1 will
result in x∗i , x1

i for both i . Moreover, if we allow ϵit to be arbitrarily large then we can select ϵit
so that T = 2 and T ′ = 3.

C PROOF OF THEOREM 4.3
Similar to Theorem 3.3, we show the probability of playing a non-essential strategy goes to 0 as

t → ∞. Suppose player i has a non-essential strategy si . Without loss of generality we assume

ui (x
∗) = 0. For almost every zero-sum game there is a unique Nash equilibrium x∗. Suppose x t is

updated according to (FTRL). Let f ti (xi ) be the function optimized in (FTRL) to find x ti .

f ti (xi ) = t · η · ui (xi ; x̄
t−1

−i ) − h(xi ) (53)

where x̄ t =
∑t

s=0
xs/t is the time-average of the player strategies.

As in the proof of Theorem 3.3, let δ = visi (x
∗) < 0. For any y sufficiently close to x∗, visi (y) <

2δ/3 by continuity of payoffs. Let η0 in the statement of the theorem be such that the time average

of FTRL converges to the interior of the above neighborhood. For any c > 0 and any xi where
xisi > c , f ti (x1) → −∞ as t → ∞. However, ui (x

∗
i ;y−i) ≥ 0 implying that for sufficiently large t ,

f ti (x
∗
i ) > f ti (xi ). Thus, for arbitrary c > 0, lim supx tisi < c implying x tisi → 0 for every non-essential

si .
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