
OCTANARY BRANCHING ALGORITHM

by

JAMES PATRICK BAILEY

B.S., Kansas State University, 2012

A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Industrial and Manufacturing Systems Engineering

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2012

Approved by:

Major Professor
Dr. Todd Easton

Copyright

James Patrick Bailey

2012

Abstract

Integer Programs (IP) are a class of discrete optimization that have been used commer-

cially to improve various systems. IPs are often used to reach an optimal financial objective

with constraints based upon resources, operations and other restrictions. While incredibly

beneficial, IPs have been shown to be NP -complete with many IPs remaining unsolvable.

Traditionally, Branch and Bound (BB) has been used to solve IPs. BB is an iterative

algorithm that enumerates all potential integer solutions for a given IP. BB can guarantee

an optimal solution, if it exists, in finite time. However, BB can require an exponential

number of nodes to be evaluated before terminating. As a result, the memory of a computer

using BB can be exceeded or it can take an excessively long time to find the solution.

This thesis introduces a modified BB scheme called the Octanary Branching Algorithm

(OBA). OBA introduces eight children in each iteration to more effectively partition the

feasible region of the linear relaxation of the IP. OBA also introduces equality constraints

in four of the children in order to reduce the dimension of the remaining nodes. OBA can

guarantee an optimal solution, if it exists, in finite time. In addition, OBA has been shown

to have some theoretical improvements over traditional BB. During computational tests,

OBA was able to find the first, second and third integer solution with 64.8%, 27.9% and

29.3% fewer nodes evaluated, respectively, than CPLEX. These integers were 44.9%, 54.7%

and 58.2% closer to the optimal solution, respectively, when compared to CPLEX. It is

recommended that commercial solvers incorporate OBA in the initialization and random

diving phases of BB.

Dedication

I dedicate my work to my parents, Patrick and Carol Bailey. Without their support

throughout the years, I would be pursuing my second passion of being a professional hobo.

Acknowledgments

Most importantly, I would like to thank Dr. Todd Easton. Not only has he made this

research possible, but he has a great deal of influence on me in the last few years and in

setting me on the right path towards accomplishing my goals. I would also like to thank

Dr. John Wu, Dr. David Yetter, and Dr. Craig Spencer. These individuals have not only

agreed to participate on my review committee, they also have given me a great deal of

opportunities in the last few years that have shaped me into the individual I am today.

Table of Contents

Table of Contents vi

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Motivation . 4

1.2 Research Contribution . 4

1.3 Thesis Outline . 5

2 Background Information 6

2.1 IP Definitions . 6

2.2 Branch and Bound . 7

2.2.1 Search Strategies . 9

2.2.2 Branching Variable Selection . 11

2.2.3 A Branch and Bound Example . 12

2.2.4 Hyperplane Branching . 15

2.2.5 Quaternary Hyperplane Branching Algorithm 16

2.2.6 A Quaternary Hyperplane Branching Algorithm Example 20

3 The Octanary Branching Algorithm (OBA) 23

3.1 OBA . 25

3.1.1 An Octanary Branching Example . 27

3.2 Theory of OBA . 29

3.3 Theoretical Benefits of OBA . 36

vi

4 Computational Results for the Octanary Branching Algorithm 41

5 Conclusion 48

5.1 Future Research . 48

Bibliography 52

A Appendix 53

vii

List of Figures

1.1 Partition for Branch and Bound . 3

2.1 Feasible Region for Example 2.2.1 . 13

2.2 Branching on Node 1 . 13

2.3 Branching on x1 ≤ 2 and x1 ≥ 3 for Example 2.2.1 14

2.4 BB Enumeration Tree for Example 2.2.1 . 16

2.5 QHBA Branching Structure . 18

2.6 QHBA Branching Structure for Example 2.2.1 21

2.7 QHBA Enumeration Tree for Example 2.2.1 22

3.1 OBA Branching Structure . 24

3.2 OBA Branching Structure intersected with the linear relaxation of Exam-

ple 2.2.1 . 29

3.3 OBA Enumeration Tree for Example 2.2.1 30

4.1 Gap Between Best Integer Solution and Optimal Solution as a Function of

Nodes Evaluated for prob.100.10.a.txt . 47

A.1 Gap Between Best Integer Solution and Optimal Solution as a Function of

Nodes Evaluated for prob.100.10.a.txt . 53

A.2 Gap Between Best Integer Solution and Optimal Solution as a Function of

Nodes Evaluated for prob.100.10.b.txt . 54

A.3 Gap Between Best Integer Solution and Optimal Solution as a Function of

Nodes Evaluated for prob.100.10.c.txt . 54

viii

A.4 Gap Between Best Integer Solution and Optimal Solution as a Function of

Nodes Evaluated for prob.250.25.a.txt . 55

A.5 Gap Between Best Integer Solution and Optimal Solution as a Function of

Nodes Evaluated for prob.250.25.b.txt . 55

A.6 Gap Between Best Integer Solution and Optimal Solution as a Function of

Nodes Evaluated for prob.250.25.c.txt . 56

A.7 Gap Between Best Integer Solution and Optimal Solution as a Function of

Nodes Evaluated for prob.500.50.a.txt . 56

A.8 Gap Between Best Integer Solution and Optimal Solution as a Function of

Nodes Evaluated for prob.500.50.b.txt . 57

A.9 Gap Between Best Integer Solution and Optimal Solution as a Function of

Nodes Evaluated for prob.500.50.c.txt . 57

ix

List of Tables

4.1 1st, 2nd and 3rd Integers Found with 100 Variables and 10 Constraints 44

4.2 1st, 2nd and 3rd Integers Found with 250 Variables and 25 Constraints 45

4.3 1st, 2nd and 3rd Integers Found with 500 Variables and 50 Constraints 46

4.4 Summary of 1st, 2nd and 3rd Integers Found 47

x

Chapter 1

Introduction

Integer programming is a class of discrete optimization in which the decision variables are

required to have integer values. Formally, an Integer Program (IP) is defined as max z = cTx

subject to Ax ≤ b, x ∈ Zn+ where c ∈ Rn, A ∈ Rmxn, and b ∈ Rm. The feasible region is

defined as P = {x ∈ Zn+|Ax ≤ b}, which is the set of all integer points that satisfy the

constraints of the IP. An IP is essentially a linear program with the additional requirement

that all decision variables must have integer values.

The primary method of solving IPs is branch and bound (BB). This thesis presents a

theoretically superior version of BB. This new algorithm is called the Octanary Branching

Algorithm (OBA) and introduces a new method of partioning the solution space. Half of

the children generated by OBA reduces the dimension of the problem by at least one. For

the children where the dimension is not reduced, it is shown that the upper bound for the

objective value is less than or equal to the upper bound for the objective value for children

that reduce the dimension of the IP.

Integer programming has been used to model and manage a wide array of systems. Delta

Airlines was the first to use an IP model to schedule flights. At the time, Delta had over

2,500 domestic flights daily that used about 450 aircrafts28. The use of this model was

expected to save Delta $300 million dollars over the next three years.

IP models have also been used in financial plannning22 26 7, including risk management for

hedge fund portolios12. Numerical experiments have shown that IPs can be used to improve

1

the performance of a portolio rebalancing strategies. It is also beneficial to combine various

risk constraints to control different types of risk.

Some methods for generating Compressed Sensing matrices require solving an IP3. Com-

pressed sensing is a technique for finding sparce solutions to undetermined linear systems.

Compressed Sensing has applications in the identification of rare alleles and their carriers25,

surface characterization and metrology19, high resolution single pixel cameras18, Magnetic

Resonance Imaging (MRI)16 17 and many other areas.

There have been many other applications of integer programmin in medicine. Recently,

mixed integer programs have been used for radiation therapy14. Optimal solutions were

found quickly and these solutions were superior in tumor coverge while minimizing radiation

damage to nearby tissues. IPs have also been used to match organ donors to potential

recipients27. As a result, the efficiency of the transplant sytem has increased significantly

in the United States.

Integer Programs have been shown to be beneficial to large variety of problems; however

the limiting factor in the application of IPs is the computational complexity of the problem.

Integer Programming is NP -complete in the strong sense10. Many IP’s require an expo-

nential amount of time to find an optimal solution. As a result, some integer programs are

unsolvable. The Mixed Integer Programming Library (MIPLIB)1 provides a 67,732 vari-

able, 656 constraint mixed integer program that is unsolved even after years of researchers’

attempts to solve it.

When an IP is unsolvable, users are forced to relax limiting factors such as constraints

or variable restrictions on integrality. Relaxing the problem to allow for solvability might

not even produce a feasible solution. Other methods, such as partioning the IP into smaller

subproblems, often lead to an inferior IP. Solutions to a weaker IP are significantly less

valuable than a solution to the desired model.

The primary method to solve IPs is the Branch and Bound algorithm (BB)2 13. BB is an

an enumerative approach that uses a tree structure of bounds and constraints to generate

2

potential solutions. BB garauntees an optimal solution to a bounded IP, if it exists, in finite

time. If no integer solution exists, then BB reports no solution. Theoretically, BB requires

an exponential number of iterations to solve to completion.

BB relies on the linear relaxation (LR) of the IP. The LR is the continuous formulation of

the IP where all constraints are identical except the variables are not required to be integer.

The LR solution includes x values, x∗LR, and the objective value, z∗LR.

BB begins by solving the LR of the IP with the solution x∗LR and z∗LR. If x∗LR /∈ Zn+
then select i such that x∗LRi /∈ Z. Two new subproblems or nodes are generated and are

referred to children of the LR. Both children are given the same constraints as the LR. The

first “less than” child is given the additional constraint of xi ≤ bx∗LRi c. The second “greater

than” child is given the additional constraint of xi ≥ bx∗LRi c + 1. All subproblems created

are solved in the same fashion until all pendant nodes are fathomed. A node is fathomed if

the LR is infeasible, integer, or z∗LR is inferior to an existing integer solution. The branching

process can be seen in Figure 1.1 below.

Figure 1.1: Partition for Branch and Bound

Notice that a single branch eliminates all of the space in the LR where bxLRi c < xi <

bxLRi c + 1. BB may require an exponential number of nodes in order to find an optimal

soluton. This is the primary disadvantage to using this method to solve IPs. Not only do

3

problems take an exponential amount of time to solve, a tree can quickly grow large enough

to exceed the memory capacity of a computer.

1.1 Motivation

The branch and bound algorithm has changed little since it was first used in 1960. Some im-

provements include various branching strategies that indicate which node is to be evaluated

next and strategies that use variables with certain properties to branch on. However, of the

existing strategies, there is no indication on which is best as the performance of a strategy

varies greatly between problem classes and even instances in the same problem class.

The motivation for this research is derived from attempting find good integer solutions

quickly. The goal for this research is to create a new branching algorithm that forces

variables to take on integer values that are relatively close to the solution of the parent

node’s LR.

1.2 Research Contribution

This research’s contribution is the development of a new branching algorithm called the

Octanary Branching Algorithm (OBA). Unlike traditional BB, which uses only one variable

to branch on, OBA uses two variables at each branch. In addition, OBA forces two variables

to be constant in four of the eight children.

OBA grants a host of benefits over traditional BB. The four left most children of OBA

have a dimension of at least one less than the parent node. OBA actually reduces the

dimension by at least two whenever both variables used for branching are noninteger in the

parent’s solution. For the remaining four children, the upper bound for the objective value

is greater than the upper bound of the objective value for the four left most children. These

two things combined suggest that children with high objective values are easier to solve. By

using a search strategy such as best bound, it is likely that many of the children that are

more difficult to solve will be fathomed due to the existance of a superior integer solution.

4

In addition, OBA garauntees that at most n of the four left most children can be evalu-

ated consecutively before fathoming a node. In the event that OBA never adds a redundant

equality constraint, this bound can be reduced to dn
2
e. During computational tests, OBA

was able to find the first, second and third integer solution with 64.8%, 27.9% and 29.3%

fewer nodes evaluated, respectively, than CPLEX. These integers were 44.9%, 54.7% and

58.2% closer to the optimal solution, respectively, when compared to CPLEX.

1.3 Thesis Outline

Chapter 2 provides the necessary background to understand the entirety of this thesis. In

this section, BB is presented. Various search strategies, as well as their benefits. associated

with BB are introduced. The methodology behind selecting particular variables to partition

space is discussed.

Chapter 3 represents the majority of work for this research. The Octanary Branching

Algorithm is explained in detail along with an example and the benefits associated with this

algorithm. Proofs are given to show finite convergence, and that OBA correctly reduces the

solution to find an optimal integer solution, if it exists. In addition, theoretical benefits are

provided in this chapter.

Chapter 4 contains a computational study of OBA. OBA is compared to a commercially

available IP software, CPLEX. This chapter presents the solution time for all methods. The

interpretation of the data illustrates the benefits of OBA.

Chapter 5 contains a conclusion and summarizes the work. During work on this research,

it was noted that the benefits of OBA could be used alongside other branching techniques,

and some other future research topics are discussed.

5

Chapter 2

Background Information

This section is dedicated to providing the fundamental knowledge required to understand

the entirety of this thesis. Only a small sample of the massive amounts of research that

has been done in the field of Integer Programming is contained in this section. For further

reading, see21.

This section begins by giving a formal definition of an Integer Program. The Branch

and Bound Algorithm is then presented as the primary tool for solving Integer Programs.

Various search strategies and methods of selecting variables for branching are presented.

An example of the Branch and Bound Algorithm is presented. Introduction to hyperplane

branching is followed by an example of the Quaternary Hyperplane Branching Algorithm.

2.1 IP Definitions

An integer program (IP) is a discrete class of optimization problems consisting of an objective

function subject to a set of constraints dependent on a set of integer decision variables.

Formally, a bounded IP is defined as max z = cTx subject to Ax ≤ b, x ≤ u, x ∈ Zn+
where c ∈ Rn, A ∈ Rmxn, u ∈ Zn+, and b ∈ Rm. The feasible region of an IP is defined

as P = {x ∈ Zn+|Ax ≤ b}. Thus, P describes the set of integer solutions that satisfy the

constraints of the IP.

Solution techniques to solve IPs typically use the linear relaxation (LR) of the IP itera-

tively. The linear relaxation is defined as max z = cTx subject to Ax ≤ b, x ≤ u, x ∈ Rn
+

6

where c ∈ Rn, A ∈ Rmxn, u ∈ Zn+, and b ∈ Rm. Let the feasible region of the LP be defined

as PLP = {x ∈ Rn
+|Ax ≤ b}.

Integer programs are NP -complete23, which results in a great deal of effort to solve

for the optimal solution even for some small instances. Linear programs, however, can be

solved in polynomial time11. Commercial solvers are capable of solving most linear programs

rapidly8.

2.2 Branch and Bound

The Branch and Bound Algorithm (BB) and variants of it are most commonly used to solve

IP’s. BB garauntees to find an optimal solution, if it exists, in finite time. BB generates a

tree structure of bounds and constraints to find an optimal solution.

BB begins by solving the linear relaxation of the IP and stores the solution as x∗LR

with an objective value of z∗LR. These two values represent the root node, T1 which is the

linear relaxation of the IP, of the tree generated by BB. Denote the node being evaluated

as the parent node Tp. If x∗Tp is noninteger, then find an xi such that x
∗Tp
i /∈ Z+. Two new

nodes for BB are generated and these nodes are referred to as children of the node Tp. Both

children will begin the same feasible region as the parent node Tp. The first “less than”

child, TLp , adds the additional constraint of xi ≤ bx∗Tpi c. The second “greater than” child,

TGp , includes the additional constraint of xi ≥ bx∗Tpi c+ 1.

BB continues until all pendant nodes are fathomed. A node is fathomed if its LR is

infeasible, if the LR is integer, or if z∗LR is inferior to the best current integer solution. BB

stores the best solution, x∗ and z∗. If x∗LR is integer and z∗LR > z∗, then x∗ and z∗ are

replaced with x∗LR and z∗LR respectively. If there are no more unfathomed pendant nodes,

then BB terminates and reports an optimal solution if it exists. If there is no solution, then

BB reports that the IP is infeasible. Formally,

The Branch and Bound Algorithm

Initialization

7

Let T = {T1} be the enumeration tree and T1 has the IP’s linear relaxation.

Set z∗ ← −∞ where z∗ is the current best integer solution.

Set totalnodes← 1.

Main Step

While there exists an unfathomed pendant node.

Let Tp be any unfathomed pendant node of T .

Solve the linear relaxation for Tp and denote it as z∗Tp and x∗Tp .

If Tp is infeasible, then mark Tp as fathomed.

If x∗Tp ∈ Zn, then mark Tp as fathomed and if z∗Tp > z∗, then set z∗ ← z∗Tp

and set x∗ ← x∗Tp .

If z∗Tp ≤ z∗, then mark Tp as fathomed.

If Tp is unfathomed, then Begin.

Select an xi such that x
∗Tp
i /∈ Z.

Set βTp ← bx∗Tpi c.

Create the following two new nodes with Tp as the parent by adding the

following constraints to Tp.

Set TLp ← Ttotalnodes+1 with the constraint xi ≤ βTp appended to Tp.

Set TGp ← Ttotalnodes+2 with the constraint xi ≥ βTp + 1 appended to Tp.

Set totalnodes← totalnodes+ 2

End if

End while

Output

If z∗ = −∞, then report the problem as infeasible; else report z∗ and x∗ as an

optimal solution.

The branching step of BB is indeterminate. During any iteration, there are many nodes

left that need to be evaluated. Selecting which node to evaluate next can have significant

implications on the efficiency of BB. Memory capacities become a large issue when selecting

8

a search strategy as the size of the tree can grow exponentially. However, it is possible that

the solution time will greatly increase when attempting to use a strategy that decreases

memory usage. Various search strategies used alongside BB are the subject of the next

section.

2.2.1 Search Strategies

Early on, various search strategies were developed to decrease the amount of memory used

when exploring the tree generated by BB. While memory issues have become less of a

concern as computers have advanced, large branching structures still occur that require

more resources than computers allow. As a result, strategies have been developed to avoid

such difficulties. Generally, search strategies fall into the categories of depth first, breadth

first, or best bound.

Depth first search is a method where BB evaluates a child node and keeps moving

downward through the tree until all ancestors are fathomed. Once a fathomed node is

found, then BB backtracks and repeats the process. Depth first strategies are typically

given a direction to explore first, such as left or right.

Depth first search is a memory efficient method of exploring the evaluation tree. Let the

depth of any node be denoted as d, where the root node has a depth of d = 1. The children

of the root node have depth d = 2, and the children of a node with depth d′ have a depth

of d = d′ + 1.

When evaluating a node at depth d, there are at most d+1 unevaluated nodes remaining

in the tree. Because the number of unevaluated nodes is linear with the current depth of

the node being evaluated, the amount of memory needed to store the tree is relatively small.

In addition, depth first strategies tend to locate integer solutions quickly resulting in more

nodes being fathomed from the tree.

There is no gaurantee, however, on the effectiveness of using a depth first strategy. It is

possible to spend a great deal of time diving to find an integer solution that fathoms very

9

few nodes in the tree. In addition, if an optimal solution does not appear on the left side of

the tree but a depth first left strategy is being used, then the majority of the tree will have

to be enumerated before finding an optimal solution. These issues can be magnified when

dealing with large problems. Now that memory issues have become less severe, other search

strategies have been devloped.

Breadth first search is a strategy that evaluates all nodes at depth d prior to evaluating

any nodes at depth d+ 1. Like depth first search, a direction is typically given to determine

which side of the tree to start with. This allivietes the concern of whether or not the correct

node was selected to explore that is associated with depth first search. Since time is not

spent exploring the ancestors of a “useless” node, breadth first search can perform well.

The primary downfall of breadth first search is that it has no goal when exploring the

tree. When evaluating a node at depth d, there are at most 2d unevaluated nodes remaining

in the tree. With an exponential relationship between the depth and number of nodes,

memory issues rapidly become a limiting factor when attempting to solve IPs with breadth

first search.

Many commercial solvers currently use some form of a best bound strategy8. Best

bound uses the objective function as a means of determining which branch of the tree to

explore first. The two nodes that have the parent with the highest z∗LR are evaluated first.

The thought behind this strategy is that a better objective value is the best candidate for

enumeration. The logic follows that an optimal integer solution would be the child of a node

with a good objective value. Finding a good integer solution quickly can decrease the size

of the current tree, prevent the need to evaluate many new nodess and leads to an improved

solution time.

In an attempt to find a good integer solution quickly, a common practice is to use a

hybrid of depth first and best bound search known as random diving8 29. In this strategy,

BB uses the best child search for a set number of interations. At preset intervals, the

algorithm switches to depth first search until the path is fathomed. This method makes an

10

attempt to quickly discover a superior integer solution.

There is no indication as to which is the best search strategy as the performance varies

greatly between problem classes and even instances in the same problem class. While one

stategy may be effective for a certain class of problems, there is no guarantee that it will

work well for all problems.

2.2.2 Branching Variable Selection

Prior to branching, BB must first select a variable to branch upon. BB only requires that if

xi is to be branched on, then x
∗Tp
i /∈ Z. However, empirical evidence shows that the choice of

xi can be very important to the running time of the algorithm21. Often there exists a set of

variables that when fixed at integer values, force all other variable to be integers. Because

there is no robust method of determining such variables, often the priority of branching

is user defined. Two common ways of selecting priorities are through degredation and

penalties.

Degredation attempts to estimate the change in z∗ caused by forcing xi to be integral.

Suppose x
∗Tp
i is noninteger. Define f

∗Tp
i such that x

∗Tp
i = bx∗Tpi c + f

∗Tp
i . By branching on

xi, it could be expected that the objective function would decrease by D
−∗Tp
i = p

−∗Tp
i f

∗Tp
i

for the left child and by D
+∗Tp
i = p

+∗Tp
i (1− f ∗Tpi) for the right child. The coefficients p

−∗Tp
i

and p
+∗Tp
i can be specified or estimated in several different ways.

Penalties involve more taxing calculations to determine the coefficients p
−∗Tp
i and p

+∗Tp
i in

order to generate a lower bound on the change in z∗Tp . In early commercial solves penalties

were used. However, emperical methods have shown that the cost of finding the penalties

exceed the benefit of the information given21.

Given D
−∗Tp
i and D

+∗Tp
i , it is common to select xi such that the minimum of D

−∗Tp
i

and D
+∗Tp
i is maximized. The rationale is that maximizing the minimum decrease in the

objective value will result in obtaining the optimal z∗ value more quickly. Another common

approach is to select xi such that the maximum of D
−∗Tp
i and D

+∗Tp
i is maximized. The idea

11

in doing this is that the branch with the lower objective value will quickly be fathomed by

dominance.

2.2.3 A Branch and Bound Example

This section gives an example of how to solve an IP. For this example, no priority for

branching on variables is given and depth first left search is used to evaluate the enumeration

tree.

Example 2.2.1.

Consider the following problem:

Maximize 5x1 + 4x2

subject to 2x1 + 6x2 ≤ 15

4x1 + 3x2 ≤ 15

x1, x2 ≥ 0, x1, x2 ∈ Z.

Figure 2.1 provides a graphical representation of the integer program with the constraints

2x1 + 6x2 ≤ 15, and 4x1 + 3x2 ≤ 15. The shaded region represents the feasible region of the

linear relaxation of the integer program. Note that the the solution to the linear relaxation

is noninteger and the only integer extreme point is (0,0).

Initially the root node, denoted as T1, must be evaluated. The LR solution is z∗T1 = 115
6

and x∗T1 = (5
2
, 5
3
). For this example, depth first left search is used. In addition, no priority

is given for which variable to branch on first.

In the root node, both decision variables are noninteger in the LR solution. Since no

priority is given for variable selection, x1 is selected. Constraints are created using the

procedure described by BB. Since x1 = 5
2
, the branches are x1 ≤ b52c = 2 and x1 ≥

b5
2
c+ 1 = 3. The branches lead to the less than child, TL1 = T2, and the greater than child,

TG1 = T3.

12

Figure 2.1: Feasible Region for Example 2.2.1

Figure 2.2 depicts the branching of the root node. For each node there are two branches,

and each branch represents one constraint. These constraints are referred to as branching

constraints. Finding the solution to the linear relaxation of a node and creating branching

constraints is one iteration of BB. Figure 2.3 shows that the branching constraints divide the

solution space into two subproblems. The shaded region represents the feasible region of the

two subproblems. Note that the previous LR solution is eliminated in the both subproblems

and that no feasible points are eliminated in the union of the two subproblems.

Figure 2.2: Branching on Node 1

For the next iteration, the x1 ≤ 2 branch is followed due to depth first left search. The

13

Figure 2.3: Branching on x1 ≤ 2 and x1 ≥ 3 for Example 2.2.1

first subproblem is denoted T2 with the following constraints: 2x1+6x2 ≤ 15, 2x1+6x2 ≤ 15,

and the branching constraint x1 ≤ 2. The linear relation of T2 is evaulated yielding a solution

of z∗T2 = 51
3

and x∗T2 = (2, 11
6

). The solution is noninteger and requires another iteration of

BB. Since x2 is the only noninteger value, the branching constraints are x2 ≤ b116 c = 1 and

x2 ≥ b116 c+ 1 = 2. Two new nodes are generated and are labled TL2 = T4 and TG2 = T5.

The next node to be evaluated is T4 which includes the constraints 2x1 + 6x2 ≤ 15,

2x1 + 6x2 ≤ 15, and the branching constraints x1 ≤ 2 and x2 ≤ 1. Note that these are the

constraints for node T2 with the additional branching constraint. The solution to the LR

is given by z∗T4 = 14 and x∗T4 = (2, 1) which is integer. The node T4 is fathomed since its

solution is integer. Since there is no current best integer solution, z∗ is set to z∗T4 = 14 and

x∗ is set to x∗T4 = (2, 1).

When a node is fathomed, it is no longer a candidate for branching. Once fathomed,

the algorithm finds another unfathomed node and continues enumerartion according to the

search strategy given.

14

BB moves to the next unfathomed node (T5) and continues with a depth first left search.

To evaluate T5, BB uses all constraints from its parent, T3, along with the branching con-

straint x2 ≥ 2. The LR of T5 yields a solution of z∗T5 = 31
2

and x∗T5 = (3
2
, 2). To create

the new nodes TL5 = T6 and TG5 = T7, BB uses the branching constraints x1 ≤ b32c = 1 and

x1 ≥ b32c+ 1 = 2 respectively.

The next node to be evaluated is T6 which includes the constraints from T5 and the

branching constraint x1 ≤ 1. Evaluating the LR of T6 yields the solution z∗T6 = 41
3

and

x∗T6 = (1, 13
6

). Since z∗T6 ≤ z∗, T6 is fathomed as it is inferior to the best existing integer

solution.

BB moves to the next unfathomed node T7. The algorithm uses all constraints from T5

along with the branching constraint x1 ≥ 2 to evaluate T7. There does not exist a feasible

solution to this linear relaxation. As a result, T7 is fathomed.

Finally, BB evaulates the only remaining node in the tree, T3. To evaluate this node,

BB uses all of the constraints from T1 along with the branching constraint x1 ≥ 3. Solving

this linear relaxation yields a solution of z∗T3 = 19 and x∗T3 = (3, 1). Since z∗T3 ≥ z∗ = 14,

z∗ is set to z∗T3 = 19 and x∗ is set to x∗T3 = (3, 1). The node T3 is fathomed since x∗T3 is

integer. As there are no remaining unfathomed nodes in the branching tree, BB terminates

and reports the solution z∗ = 19 and x∗ = (3, 1). The full enumeration tree can be seen in

Figure 2.4.

2.2.4 Hyperplane Branching

Hyperplane branching is a modification on the branching constraints in BB. For BB, branch-

ing constraints are based on single variables. Hyperplane branches, however, attempt to in-

crease the efficiency of the enumeration tree by branching on constraints based on multiple

variables. The branching constraints would follow a similar pattern to BB. One child in-

cludes the constraint
∑n

i=1 αixi ≤ β and the other child has the constraint
∑n

i=1 αixi ≥ β+1

where β ∈ Z.

15

Figure 2.4: BB Enumeration Tree for Example 2.2.1

While hyperplane branching has shown good results9 20 24, it is limited by several factors.

Unlike traditional BB which only stores the index of the variable branched on, hyperplane

branching must store information on each variable in each node. In addition, by adding

constraints that do not simply act as lower and upper bounds on a single variable, hyperplane

branching causes the size of the basis to increase linearly with the depth of the node in the

tree. This results in an increase in the time to solve each linear relaxtion and the amount

of memory required to store the basis.

2.2.5 Quaternary Hyperplane Branching Algorithm

The Quaternary Hyperplane Branching Algorithm (QHBA)15 is a modified version of BB

and is the most related work to the algorithm presented in this thesis. QHBA utilizes hyper-

plane branching constraints and internal cutting planes to generate an efficient quaternary

branching scheme. Implementation of this scheme theoretically improves QHBA in com-

parison to BB. It can also be shown that QHBA guarantees an optimal solution in finite

steps for a bounded IP. A short computational study shows that using QHBA to evaluate

16

the first 2000 nodes results in a 26.7% decrease when compared to CPLEX alone.

QHBA begins by solving the linear relaxation of the IP, denoted by T1 and stores the

solution as x∗LR with an objective value of z∗LR. These two values represent the root node,

T1, of the tree generated by QHBA. Denote the node being evaluated as the parent node

Tp. If x∗Tp is noninteger, then select α1Tp and α2Tp ∈ {−1, 0, 1}n . For k = 1 and 2, if∑n
i=1 α

kTpx
∗Tp
i ∈ Z, then select a j ∈ {1, ..., n} such that x

∗Tp
j /∈ Z, and if α

kTp
j = 0, then set

α
kTp
j to 1, else set α

kTp
j to 0. Set βkTp to b

∑n
i=1 α

kTpx
∗Tp
i c for k = 1 and 2. Four new nodes

for QHBA are generated and these nodes are referred to as children of the node Tp. All

children begin with the same linear relaxation as the parent node Tp. The “less than less

than,” “less than greater than,” “greater than less than,” and “greater than greater than,”

denoted TLLp , TLGp , TGLp and TGGp repectively, have constraints as follows and can be seen

in Figure 2.5:

TLLp)
∑n

i=1 α
1Tp
i xi ≤ β1Tp ,

∑n
i=1 α

2Tp
i xi ≤ β2Tp ,

∑n
i=1b

α
1Tp
i +α

2Tp
i

2
cxi ≤ bβ

1Tp+β2Tp

2
c.

TLGp)
∑n

i=1 α
1Tp
i xi ≤ β1Tp ,

∑n
i=1 α

2Tp
i xi ≥ β2Tp + 1,

∑n
i=1b

α
1Tp
i −α2Tp

i

2
cxi ≤ bβ

1Tp−β2Tp−1
2

c.

TGLp)
∑n

i=1 α
1Tp
i xi ≥ β1Tp +1,

∑n
i=1 α

2Tp
i xi ≤ β2Tp ,

∑n
i=1b

−α1Tp
i +α

2Tp
i

2
cxi ≤ b−β

1Tp+β2Tp−1
2

c.

TGGp)
∑n

i=1 α
1Tp
i xi ≥ β1Tp+1,,

∑n
i=1 α

2Tp
i xi ≥ β2Tp+1,

∑n
i=1b

−α1Tp
i −α2Tp

i

2
cxi ≤ b−β

1Tp−β2Tp−2
2

c.

QHBA continues until all pendant nodes are fathomed. A node is fathomed if its LR

is infeasible, if the LR is integer, or if z∗LR is inferior to the best current integer solution.

QHBA stores the best solution, x∗ and z∗. If x∗LR is integer and z∗LR > z∗, then x∗ and

z∗ are replaced with x∗LR and z∗LR respectively. If there are no more unfathomed pendant

nodes, then QHBA terminates and reports an optimal solution if it exists. If there is no

solution, then QHBA reports that the IP is infeasible. Formally,

Quaternary Hyperplane Branching Algorithm

Initialization

Let T = {T1} be the enumeration tree and T1 has the IP’s linear relaxation.

Set z∗ ← −∞ where z∗ is the current best integer solution.

Set totalnodes← 1.

17

Figure 2.5: QHBA Branching Structure

Main Step

While there exists an unfathomed pendant node.

Let Tp be any unfathomed pendant node of T .

Solve the linear relaxation for Tp and denote it as z∗Tp and x∗Tp .

If Tp is infeasible, then mark Tp as fathomed.

If x∗Tp ∈ Zn, then mark Tp as fathomed and if z∗Tp > z∗, then set z∗ ← z∗Tp

and set x∗ ← x∗Tp .

If z∗Tp ≤ z∗, then mark Tp as fathomed.

If Tp is unfathomed, then Begin.

Select an α1Tp and α2Tp ∈ {−1, 0, 1}n.

For k = 1 and 2, Begin

If
∑n

i=1 α
kTpx

∗Tp
i ∈ Z, then select a j ∈ {1, ..., n} such that x

∗Tp
j /∈ Z,

and if α
kTp
j = 0, then set α

kTp
j ← 1, else set αkTp ← 0

Set βkTp ← b
∑n

i=1 α
kTp
i x

∗Tp
i c.

Create the following four new nodes with Tp as the parent by adding the

18

following constraints to Tp.

Set TLLp ← Ttotalnodes+1 with the following constraints appended to Tp.∑n
i=1 α

1Tp
i xi ≤ β1Tp .∑n

i=1 α
2Tp
i xi ≤ β2Tp .∑n

i=1b
α
1Tp
i +α

2Tp
i

2
cxi ≤ bβ

1Tp+β2Tp

2
c.

Set TLGp ← Ttotalnodes+2 with the following constraints appended to Tp.∑n
i=1 α

1Tp
i xi ≤ β1Tp .∑n

i=1 α
2Tp
i xi ≥ β2Tp + 1.∑n

i=1b
α
1Tp
i −α2Tp

i

2
cxi ≤ bβ

1Tp−β2Tp−1
2

c.

Set TGLp ← Ttotalnodes+3 with the following constraints appended to Tp.∑n
i=1 α

1Tp
i xi ≥ β1Tp + 1.∑n

i=1 α
2Tp
i xi ≤ β2Tp .∑n

i=1b
−α1Tp

i +α
2Tp
i

2
cxi ≤ b−β

1Tp+β2Tp−1
2

c.

Set TGGp ← Ttotalnodes+4 with the following constraints appended to Tp.∑n
i=1 α

1Tp
i xi ≥ β1Tp + 1.∑n

i=1 α
2Tp
i xi ≥ β2Tp + 1.∑n

i=1b
−α1Tp

i −α2Tp
i

2
cxi ≤ b−β

1Tp−β2Tp−2
2

c.

Set totalnodes← totalnodes+ 4

End if

End while

Output

If z∗ = −∞, then report the problem as infeasible; else report z∗ and x∗ as an

optimal solution.

While the computational study of QHBA showed promising results, it was limited by

the insufficient amount of memory required to evaluate the entire enumeration tree. By

generating 2 or 3 hyperplane branching constraints, QHBA required up to 3(n+1) coefficients

to be stored for each node generated. For each child generated, the size of the basis for a

19

child would increase by up to 3. As a result, the memory of the computer was exceedd and

QHBA was unable to solve to termination.

2.2.6 A Quaternary Hyperplane Branching Algorithm Example

Now that a formal definition of QHBA has been established, an example of how to solve an

IP using QHBA is given. For this example, no priority for branching on variables is given

and depth first left search is used to evaluate the enumeration tree.

Example 2.2.2.

Reconsider the problem from Example 2.2.1:

Maximize 5x1 + 4x2

subject to 2x1 + 6x2 ≤ 15

4x1 + 3x2 ≤ 15

x1, x2 ≥ 0, x1, x2 ∈ Z.

Again depth first left search and no priorities for selecting branching variables are used.

The first iteration of QHBA finds the solution to the root node, T1, which is z∗T1 = 115
6

and

x∗T1 = (5
2
, 5
3
). Let α1T1 = {1, 1} and α2T1 = {1,−1}. Now β1 and β2 can be calculated with

β1 = bα
1T1
1 x

∗T1
1 +α

1T1
2 x

∗T1
2

2
c = 4 and β2 = bα

2T1
1 x

∗T1
1 +α

2T1
2 x

∗T1
2

2
c = 0. Branching constraints are

added to the root node to create 4 children as follows with the ordered determined by the

depth first left search:

TLL1 = T2 is given the additional constraints x1 + x2 ≤ β1 = 4 and x1 − x2 ≤ β2 = 0.

TLG1 = T3 is given the additional constraints x1 + x2 ≤ β1 = 4, x1− x2 ≥ β2 + 1 = 1 and

x2 ≤ 1.

TGL1 = T4 is given the additional constraints x1 + x2 ≥ β1 + 1 = 5, x1− x2 ≤ β2 = 0 and

x2 ≥ 3.

TGG1 = T5 is given the additional constraints x1+x2 ≥ β1+1 = 5 and x1−x2 ≥ β2+1 = 1.

20

As shown in Figure 2.6, these 4 subproblems partition the solution space without elim-

inating any integer points. Since depth first left search is used, the first node to be eval-

uated is T2. Evaluating this node yields a solution of z∗T2 = 135
8

and x∗T2 = (15
8
, 15

8
).

Since x∗T2 is noninteger, four additional children must be created. Let α1T2 = {1, 1} and

α2T2 = {1, 0}. Now β1 and β2 can be calculated with β1 = bα
1T2
1 x

∗T2
1 +α

1T2
2 x

∗T2
2

2
c = 3 and

β2 = bα
2T2
1 x

∗T2
1 +α

2T2
2 x

∗T2
2

2
c = 1. Branching constraints are added to the T2 to create 4 children

as follows:

Figure 2.6: QHBA Branching Structure for Example 2.2.1

TLL1 = T6 is given the additional constraints x1 + x2 ≤ β1 = 3 and x1 ≤ β2 = 1.

TLG1 = T7 is given the additional constraints x1 + x2 ≤ β1 = 3 and x1 ≥ β2 + 1 = 2.

TGL1 = T8 is given the additional constraints x1 + x2 ≥ β1 + 1 = 4, x1 ≤ β2 = 1 and

x2 ≥ 2.

TGG1 = T9 is given the additional constraints x1 + x2 ≥ β1 + 1 = 4 and x1 ≥ β2 + 1 = 2.

Evaluating T6 yields the solution z∗T6 = 13 and x∗T6 = (1, 2). Since the solution is

integer, T6 is fathomed and z∗ is set to z∗T6 = 13 and x∗ is set to x∗T6 . The nodes T7, T8

21

and T9 are all found to be infeasible.

The next node to evaluate is T3. This yields a solution of z∗T3 = 19 and x∗T3 = (3, 1).

Since the solution is integer and z∗T3 > z∗, z∗ is set to z∗T3 = 19 and x∗ is set to x∗T3 . The

nodes T4 and T5 are found to be infeasible and QHBA reports the optimal solution z∗ and

x∗. The full enumeration tree can be seen in Figure 2.7.

Figure 2.7: QHBA Enumeration Tree for Example 2.2.1

22

Chapter 3

The Octanary Branching Algorithm
(OBA)

This chapter describes the Octanary Branching Algorithm (OBA) and gives an example to

demonstrate its implementation. In addition, all theory necessary to show that OBA cor-

rectly solves a bounded IP in finite time is provided. Theoretical benefits are also discussed

in this chapter.

OBA, like BB, begins by solving the linear relaxation of the IP, represented by T1, and

stores the solution as x∗LR with an objective value of z∗LR. These two values represent the

root node, T1 of the tree generated by BB. The primary difference between BB and OBA is

the branching step of the algorithm. Denote the node being evaluated as the parent node

Tp. If x∗Tp is noninteger, then find an xi and xj such that x
∗Tp
i , x

∗Tp
j /∈ Z+. If no xj exists

such that i 6= j, then xj can be chosen arbitrarily. OBA allows for i = j but operates more

effictively when i and j are unique. Eight new nodes for OBA are generated and these nodes

are referred to as children of the node Tp. The children begin with the same feasible region

as the parent node Tp. The eight children shall be denoted as T abkp where a or b specify less

than or greater than constraints for xi and xj respectively and k specifies if the child has

equality or inequality constraints. The eight children are defined as follows and are depicted

graphically in Figure 3.1:

TLLe
p = Tp ∩ {x ∈ Rn

+|xi = bx∗Tpi c, xj = bx∗Tpj c}.

23

TGLe
p = Tp ∩ {x ∈ Rn

+|xi = bx∗Tpi c+ 1, xj = bx∗Tpj c}

TLGe
p = Tp ∩ {x ∈ Rn

+|xi = bx∗Tpi c, xj = bx∗Tpj c+ 1}

TGGe
p = Tp ∩ {x ∈ Rn

+|xi = bx∗Tpi c+ 1, xj = bx∗Tpj c+ 1}

TLLi
p = Tp ∩ {x ∈ Rn

+|xi ≤ bx
∗Tp
i c, xj ≤ bx

∗Tp
j c, xi + xj ≤ bx∗Tpi c+ bx∗Tpj c − 1}.

TGLi
p = Tp ∩ {x ∈ Rn

+|xi ≥ bx
∗Tp
i c+ 1, xj ≤ bx∗Tpj c,−xi + xj ≤ −bx∗Tpi c+ bx∗Tpj c − 2}.

TLGi
p = Tp ∩ {x ∈ Rn

+|xi ≤ bx
∗Tp
i c, xj ≥ bx

∗Tp
j c+ 1, xi − xj ≤ bx∗Tpi c − bx

∗Tp
j c − 2}.

TGGi
p = Tp ∩{x ∈ Rn

+|xi ≥ bx
∗Tp
i c+ 1, xj ≥ bx∗Tpj c+ 1,−xi−xj ≤ −bx∗Tpi c− bx

∗Tp
j c− 3}.

Figure 3.1: OBA Branching Structure

Observe that the four children closest to the parent’s optimal solution have two variables

set to integer values. The outer four children, which only create bounds for the variables,

are pushed further from the parent’s optimal solution and are likely to have poor objective

values.

24

3.1 OBA

OBA is similar to BB in that it iteratively generates a set of new constraints to eliminate

noninteger solutions. OBA garauntees to find an optimal solution, if it exists, in finite time

for a bounded IP. OBA generates a tree structure of bounds and constraints to find an

optimal solution.

OBA continues until all pendant nodes are fathomed. A node is fathomed if its LR is

infeasible, if the LR is integer, or if z∗LR is inferior to the best current integer solution. OBA

stores the best solution, x∗ and z∗. If x∗LR is integer and z∗LR > z∗, then x∗ and z∗ are

replaced with x∗LR and z∗LR respectively. If there are no more unfathomed pendant nodes,

then OBA terminates and reports an optimal solution if it exists. If there is no solution,

then OBA reports that the IP is infeasible. Formally,

The Octanary Branching Algorithm

Initialization

Let T = {T1} be the enumeration tree and T1 has the IP’s linear relaxation.

Set z∗ ← −∞ where z∗ is the current best integer solution.

Set totalnodes← 1.

Main Step

While there exists an unfathomed node pendant node.

Let Tp be any unfathomed pendant node of T .

Solve the linear relaxation for Tp and denote it as z∗Tp and x∗Tp .

If Tp is infeasible, then mark Tp as fathomed.

If x∗Tp ∈ Zn, then mark Tp as fathomed and if z∗Tp > z∗, then set z∗ ← z∗Tp

and set x∗ ← x∗Tp .

If z∗Tp ≤ z∗, then mark Tp as fathomed.

If Tp is unfathomed, then Begin.

Select an xi and xj such that x
∗Tp
i , x

∗Tp
j /∈ Z. If there does not exist such

an xj where i 6= j, then xj can be chosen arbitrarily.

25

Set β
Tp
1 ← bx

∗Tp
i c and set β

Tp
2 ← bx

∗Tp
j c.

Create the following eight new nodes with Tp as the parent by adding the

following constraints to Tp.

Set TLLe
p ← Ttotalnodes+1 with the following constraints appended to Tp.

xi = β
Tp
1 .

xj = β
Tp
2 .

Set TGLe
p ← Ttotalnodes+2 with the following constraints appended to Tp.

xi = β
Tp
1 + 1.

xj = β
Tp
2

Set TLGe
p ← Ttotalnodes+3 with the following constraints appended to Tp.

xi = β
Tp
1 .

xj = β
Tp
2 + 1

Set TGGe
p ← Ttotalnodes+4 with the following constraints appended to Tp.

xi = β
Tp
1 + 1.

xj = β
Tp
2 + 1

Set TLLi
p ← Ttotalnodes+5 with the following constraints appended to Tp.

xi ≤ β
Tp
1 .

xj ≤ β
Tp
2 .

xi + xj ≤ β
Tp
1 + β

Tp
2 − 1

Set TGLi
p ← Ttotalnodes+6 with the following constraints appended to Tp.

xi ≥ β
Tp
1 + 1.

xj ≤ β
Tp
2

−xi + xj ≤ −βTp1 + β
Tp
2 − 2

Set TLGi
p ← Ttotalnodes+7 with the following constraints appended to Tp.

xi ≤ β
Tp
1 .

xj ≥ β
Tp
2 + 1

xi − xj ≤ β
Tp
1 − β

Tp
2 − 2

26

Set TGGi
p ← Ttotalnodes+8 with the following constraints appended to Tp.

xi ≥ β
Tp
1 + 1.

xj ≥ β
Tp
2 + 1

−xi − xj ≤ −βTp1 − β
Tp
2 − 3

Set totalnodes← totalnodes+ 8

End if

End while

Output

If z∗ = −∞, then report the problem as infeasible; else report z∗ and x∗ as an

optimal solution.

3.1.1 An Octanary Branching Example

Now that a formal definition of OBA has been established, an example of how to solve an

IP using OBA is given. For this example, no priority for branching on variables is given and

depth first left search is used to evaluate the enumeration tree.

Example 3.1.1.

Reconsider the problem from Example 2.2.1:

Maximize 5x1 + 4x2

subject to 2x1 + 6x2 ≤ 15

4x1 + 3x2 ≤ 15

x1, x2 ≥ 0, x1, x2 ∈ Z.

Again depth first left search and no priorities for selecting branching variables are used.

The first iteration of OBA finds the solution to the root node, T1, which is z∗T1 = 115
6

and

x∗T1 = (5
2
, 5
3
). Both values are noninteger and shall be used in the branching step. Now β1

and β2 can be calculated with β1 = b5
2
c = 2 and β2 = b5

3
c = 1. Branching constraints are

27

added to the root node to create 8 children as follows with the ordered determined by the

depth first left search:

TLLe
1 = T2 is given the additional constraints x1 = β1 = 2 and x2 = β2 = 1.

TGLe
1 = T3 is given the additional constraints x1 = β1 + 1 = 3 and x2 = β2 = 1.

TLGe
1 = T4 is given the additional constraints x1 = β1 = 2 and x2 = β2 + 1 = 2.

TGGe
1 = T5 is given the additional constraints x1 = β1 + 1 = 3 and x2 = β2 + 1 = 2.

TLLi
1 = T6 is given the additional constraints x1 ≤ β1 = 2, x2 ≤ β2 = 1 and x1 + x2 ≤

β1 + β2 − 1 = 2.

TGLi
1 = T7 is given the additional constraints x1 ≥ β1 + 1 = 3, x2 ≤ β2 = 1 and

−x1 + x2 ≤ −β1 + β2 − 2 = −3.

TLGi
1 = T8 is given the additional constraints x1 ≤ β1 = 2, x2 ≥ β2 + 1 = 2 and

x1 − x2 ≤ β1 − β2 − 2 = −1.

TGGi
1 = T9 is given the additional constraints x1 ≥ β1 + 1 = 3, x2 ≥ β2 + 1 = 2 and

−x1 − x2 ≤ −β1 − β2 − 3 = −6.

As shown in Figure 3.2, these 8 subproblems partition the solution space without elimi-

nating any integer points. Since depth first left search is used, the first node to be evaluated

is T2. Evaluating this node yields a solution of z∗T2 = 14 and x∗T2 = (2, 1). Since x∗T2 is

integer, T2 is fathomed and z∗ is set to z∗T2 = 14 and x∗ is set to x∗T2 . T3 is the next node

to be evaluated. Evaluating T3 gives the solution z∗T3 = 19 and x∗T3 = (3, 1). Since x∗T3 is

integer, T3 is fathomed and since z∗T3 ≥ z∗, z∗ is set to z∗T3 = 19 and x∗ is set to x∗T3 .

Nodes T4 and T5 are to be evaluated next. However, T4 and T5 are fathomed as there

does not exist a feasible solution for either node. The node T6 is evaluated next yielding

a solution of z∗T6 = 10 and x∗T6 = (2, 0) and is fathomed as z∗T6 ≤ z∗ and since x∗T6 . T7

generates a solution with objective z∗T7 = 132
7

. Since z∗T7 ≤ z∗, T7 is fathomed. When

evaluated, T8 yields a solution with objective z∗T8 = 113
8

. Since z∗T8 ≤ z∗, T8 is fathomed.

T9 is the final node in the tree to be evaluated. This node is fathomed as there does not

exist a feasible solution. As there are no more nodes to be evaluated, OBA terminates and

28

Figure 3.2: OBA Branching Structure for Example 2.2.1

reports an optimal solution of z∗ = 19 and x∗ = (3, 1). The full enumeration tree can be

seen in Figure 3.3.

3.2 Theory of OBA

The purpose of this section is to show that OBA solves integer programs to optimality in

finite time. First a lemma is presented showing that the branching constraints of the children

generated by OBA have integers as extreme points. A proof follows that demonstrates that

no integer solutions are removed in the branching step of OBA. Finally, these lemmas are

brought together to prove that OBA solves to optimality in finite time.

First it is shown that the regions described by the constraints all have integer extreme

points when i 6= j. Define the 8 regions as follows:

PLR
LLe

= {x ∈ Rn
+|xi = β1, xj = β2, xk ≤ uk ∀ k ∈ N}.

PLR
GLe

= {x ∈ Rn
+|xi = β1 + 1, xj = β2, xk ≤ uk ∀ k ∈ N}.

29

Figure 3.3: OBA Enumeration Tree for Example 2.2.1 with the First Four Children in the
First Row

PLR
LGe

= {x ∈ Rn
+|xi = β1, xj = β2 + 1, xk ≤ uk ∀ k ∈ N}.

PLR
GGe

= {x ∈ Rn
+|xi = β1 + 1, xj = β2 + 1, xk ≤ uk ∀ k ∈ N}.

PLR
LLi

= {x ∈ Rn
+|xi ≤ β1, xj ≤ β2, xi + xj ≤ β1 + β2 − 1, xk ≤ uk ∀ k ∈ N}.

PLR
GLi

= {x ∈ Rn
+|xi ≥ β1 + 1, xj ≤ β2,−xi + xj ≤ −β1 + β2 − 2, xk ≤ uk ∀ k ∈ N}.

PLR
LGi

= {x ∈ Rn
+|xi ≤ β1, xj ≥ β2 + 1, xi − xj ≤ β1 − β2 − 2, xk ≤ uk ∀ k ∈ N}.

PLR
GGi

= {x ∈ Rn
+|xi ≥ β1 + 1, xj ≥ β2 + 1,−xi − xj ≤ −β1 − β2 − 3, xk ≤ uk ∀ k ∈ N}.

Let ek denote the vector with all zeroes with a one in the kth column. Let δk = 0 if

xk = 0 and δk = 1 otherwise.

Lemma 3.2.1. The extreme points given by PLR
LLe

, PLR
LLi

, PLR
GLe

, PLR
GLi

, PLR
LGe

, PLR
LGi

, PLR
GGe

, and

PLR
GGi

are integer if i 6= j.

Proof. A well known result is that the extreme points of a linear program are the basic

feasible solutions. The nonbasic variables must be either at the lower or upper bound. The

basic variables occur at the intersection of a subset of the constraints that define the feasible

region. It is now straightforward to argue that the following points are the only extreme

30

points in OBA’s branching structure.

PLR
LLe

) x = β1ei + β2ej +
∑

k∈N\{i,j} δkukek.

PLR
GLe

) x = (β1 + 1)ei + β2ej +
∑

k∈N\{i,j} δkukek.

PLR
LGe

) x = β1ei + (β2 + 1)ej +
∑

k∈N\{i,j} δkukek.

PLR
GGe

) x = (β1 + 1)ei + (β2 + 1)ej +
∑

k∈N\{i,j} δkukek.

PLR
LLi

) x = (β1 − 1)ei + β2ej +
∑

k∈N\{i,j} δkukek and also

x = β1ei + (β2 − 1)ej +
∑

k∈N\{i,j} δkukek.

PLR
GLi

) x = (β1 + 2)ei + β2ej +
∑

k∈N\{i,j} δkukek and also

x = (β1 + 1)ei + (β2 − 1)ej +
∑

k∈N\{i,j} δkukek.

PLR
LGi

) x = (β1 − 1)ei + (β2 + 1)ej +
∑

k∈N\{i,j} δkukek and also

x = β1ei + (β2 + 2)ej +
∑

k∈N\{i,j} δkukek.

PLR
GGi

) x = (β1 + 2)ei + (β2 + 1)ej +
∑

k∈N\{i,j} δkukek and also

x = (β1 + 1)ei + (β2 + 2)ej +
∑

k∈N\{i,j} δkukek.

Trivially all of these points are integer.

Next it is shown that no integer points are removed from the feasible region during the

branching step. This is done by first breaking the feasible region into four quadrants. Due

to the symmetry of the quadrants, only one is examined. It is shown that all integer points

in the quadrant are also contained in the union its two children.

Lemma 3.2.2. Let Tp be any node in OBA’s branching tree, then Zn ∩ Tp = Zn ∩ (TLLe
p ∪

TLLi
p ∪ TLGe

p ∪ TLGi
p ∪ TGLe

p ∪ TGLi
p ∪ TGGe

p ∪ TGGi
p).

Proof. Trivially, Zn ∩ (TLLe
p ∪ TLLi

p ∪ TLGe
p ∪ TLGi

p ∪ TGLe
p ∪ TGLi

p ∪ TGGe
p ∪ TGGi

p) ⊆ Zn ∩ Tp,

because each of the eight regions is a subset of Tp.

To show containment in the opposite direction, begin by examining four regions defined

as TLLp , TGLp , TLGp , and TGGp .

TLLp = Tp ∩ {x ∈ Rn
+|xi ≤ β

Tp
1 , xj ≤ β

Tp
2 }.

TGLp = Tp ∩ {x ∈ Rn
+|xi ≥ β

Tp
1 + 1, xj ≤ β

Tp
2 }.

31

TLGp = Tp ∩ {x ∈ Rn
+|xi ≤ β

Tp
1 , xj ≥ β

Tp
2 + 1}.

TGGp = Tp ∩ {x ∈ Rn
+|xi ≥ β

Tp
1 + 1, xj ≥ β

Tp
2 + 1}.

Trivially, every x ∈ Zn satisfies either xi ≤ β or xi ≥ β + 1. As a result, Zn ∩ Tp ⊆

Zn ∩ (TLLp ∪ TGLp ∪ TLGp ∪ TGGp). Because each of the four regions is a subset of Tp, Zn ∩

(TLLp ∪ TGLp ∪ TLGp ∪ TGGp) ⊆ Zn ∩ Tp. Thus, Zn ∩ Tp = Zn ∩ (TLLp ∪ TGLp ∪ TLGp ∪ TGGp).

Without loss of generality only the region TLLp shall be considered since the additional

constraints added to define the children are symmetric around xi = β
Tp
1 +.5 and xj = β

Tp
2 +.5.

For contradiction, assume there exists x′ ∈ (Zn ∩ TLLp) where x′ /∈ (TLLe
p ∪ TLLi

p). By De

Morgan’s law, x′ ∈ (¬TLLe
p ∩ ¬TLLi

p) ∩ (Zn ∩ TLLp). Since TLLi
p = TLLp ∩ {x ∈ Rn|xi + xb ≤

β1+β2−1}, it follows that x′ ∈ TLLp ∩{x ∈ Rn|xi+xb ≥ β1+β2−1}. But this region describes

the space described by the points {x ∈ Rn|xi = β1 and xj = β2}, {x ∈ Rn|xi = β1 − 1 and

xj = β2}, and {x ∈ Rn|xi = β1 and xj = β2 − 1}. Trivially, the only integers in the space

are given by {x ∈ Zn|xi = β1 and xj = β2}, {x ∈ Zn|xi = β1 − 1 and xj = β2}, and

{x ∈ Zn|xi = β1 and xj = β2 − 1}. But this implies that x′ ∈ (TLLe
p ∪ TLLi

p) and thus a

contradiction is formed therby confirming that (Zn ∩ TLLp) ⊆ (Z ∩ (TLLe
p ∪ TLLi

p)). As a

result, this lemma is shown.

Lemma 3.2.2 shows that any integer solution that satisfies the parent node is contained

in exactly one of the children. However, this does not show that OBA terminates. This

lemma only ensures that OBA does not eliminate any integer points and that the solution

is optimal, if OBA terminates.

Next it is shown that OBA terminates and correctly solves any bounded integer program.

This is done through a proof by induction on the number of variables in the problem. First

it is shown that OBA correctly solves a problem with one variable. In the inductive step,

it is shown that OBA either terminates because an optimal integer solution is found, there

does not exist a feasible solution or at least one variable is forced to equality thus reducing

the number of decision variables in the problem by at least one.

Theorem 3.2.3. OBA correctly solves any bounded integer program in a finite number of

32

steps.

Proof. For all variables xi, let the lower and upper bound be denoted by lbi and ubi respec-

tively. Note that initially lbi = 0 and ubi = ui ∀ i ∈ [1, n] ∩ Z.

Base Case: OBA correctly solves a bounded IP with one variable.

Consider the problem:

Maximize c1x1

subject to Ax1 ≤ b

x1 ∈ Z+.

Trivially, since there is only one variable, this problem can be reduced to the following:

Maximize c1x1

subject to b1 ≤ x1 ≤ b2

x1 ∈ Z+.

Without loss of generality, assume that c1 > 0. If c1 is negative, then an upper bound

substitution could be performed to generate the same problem with new b1 and b2. Also

assume c1 = 1 since maximizing x1 and maximizing c1x1 are effectively the same prob-

lem. It can also be assumed that lb1 ≤ b1 and ub1 ≥ b2 since the problem would otherwise

be simplified.

If b2 < b1, then there trivially is no integer solution and OBA reports such as there is no

feasible solution when the first LR is solved which terminates this case.

If b2 ≥ b1 and [b1, b2]∩Z = ∅, then there is no integer solution. OBA solves the first LR

and yields the solution x1 = b2. OBA then generates the following eight children:

TLLe = Tp ∩ {x ∈ R|x1 = bb2c, x1 = bb2c} which yields no solution.

33

TGLe = Tp ∩ {x ∈ R|x1 = bb2c+ 1, x1 = bb2c} which yields no solution.

TLGe = Tp ∩ {x ∈ R|x1 = bb2c, x1 = bb2c+ 1} which yields no solution.

TGGe = Tp ∩ {x ∈ R|x1 = bb2c+ 1, x1 = bb2c+ 1} which yields no solution.

TLLi = Tp ∩ {x ∈ R|x1 ≤ bb2c, x1 ≤ bb2c, 2x1 ≤ 2bb2c − 1} which yields no solution.

TGLi = Tp ∩ {x ∈ R|x1 ≥ bb2c+ 1, x1 ≤ bb2c, 0 ≤ −2} which yields no solution.

TLGi = Tp ∩ {x ∈ R|x1 ≤ bb2c, x1 ≥ bb2c+ 1, 0 ≤ −2} which yields no solution.

TGGi = Tp ∩ {x ∈ R|x1 ≥ bb2c + 1, x1 ≥ bb2c + 1,−2x1 ≤ −2bb2c − 3} which yields

no solution.

All of these children are infeasible and OBA correctly reports that there does not exist

a solution, which concludes this case.

If b2 ≥ b1 and [b1, b2] ∩ Z 6= ∅. Trivially, the solution to this IP is x1 = bb2c. If b2 ∈ Z,

then OBA correctly reports the optimal solution in the first iteration. Otherwise OBA

finds the noninteger solution x1 = b2 and generates the following eight children:

TLLe = Tp ∩ {x ∈ R|x1 = bb2c, x1 = bb2c} which yields the optimal solution of

z∗ = x1 = bb2c.

TGLe = Tp ∩ {x ∈ R|x1 = bb2c+ 1, x1 = bb2c} which yields no solution.

TLGe = Tp ∩ {x ∈ R|x1 = bb2c, x1 = bb2c+ 1} which yields no solution.

TGGe = Tp ∩ {x ∈ R|x1 = bb2c+ 1, x1 = bb2c+ 1} which yields no solution.

TLLi = Tp ∩ {x ∈ R|x1 ≤ bb2c, x1 ≤ bb2c, 2x1 ≤ 2bb2c − 1} which is fathomed by

TLLe .

TGLi = Tp ∩ {x ∈ R|x1 ≥ bb2c+ 1, x1 ≤ bb2c, 0 ≤ −2} which yields no solution.

TLGi = Tp ∩ {x ∈ R|x1 ≤ bb2c, x1 ≥ bb2c+ 1, 0 ≤ −2} which yields no solution.

TGGi = Tp ∩ {x ∈ R|x1 ≥ bb2c + 1, x1 ≥ bb2c + 1,−2x1 ≤ −2bb2c − 3} which yields

no solution.

All of these children are evaluated and OBA reports the optimal solution with z∗ =

x1 = bb2c and this concludes this case. All possible case have been examined so OBA

34

correctly solves a bounded one dimensional IP.

Inductive Step: By strong induction, assume OBA correctly solves bounded IPs with

i ∈ [1, n − 1] ∩ Z variables. It is shown that OBA correctly solves bounded IPs with n

variables.

For all variables, let ubi−lbi = ui. For each non-fathomed node, there exists an x∗LRi /∈ Z

and eight children are generated. For each child, xi satisfies either xi ≤ bx∗LRi c < ubi or

xi ≥ bx∗LRi c + 1 > lbi as shown in Lemma 3.2.1. In the first case, ubi can be updated

to bx∗LRi c while in the second case lbi is updated to bx∗LRi c+ 1. In either case, when ui

is recalculated, it is reduced by at least one. As a result, xi can be branched on by at

most ui − 1 before lbi = ubi. This implies that lbi = ubi for some i ∈ [1, n]∩Z when the

enumeration tree reaches a depth of
∑n

i=1 ui − n+ 1.

Once lbi = ubi, xi is constant and the number of variables is reduced by at least one.

Thus, every pendant node in the enumeration tree is eventually fathomed at a depth

of
∑n

i=1 ui − n + 1 or the total number of variables is reduced by at least one. By the

inductive hypothesis, all nodes where the number of variables is less than n terminate

and solve correctly. As a result, OBA terminates when solving a bounded IP with n

variables. For every pendant node in the fully expanded enumeration tree, there is an

integer solution, the region is infeasible, or the LR is inferior to an existing integer

solution. Since there are no feasible integer points removed as shown in Lemma 3.2.2,

OBA correctly reports an optimal solution, if it exists.

Theorem 3.2.3 gives an inductive proof that that OBA correctly solves a bounded IP.

Alternatively, it can be shown that OBA solves correctly by recognizing that all variables

will be forced to integer at a depth of
∑n

i=1 ui.

35

OBA correctly reports an optimal solution, if it exists, for any bounded IP. However,

there must be a benefit gained by OBA in order for its implementation to be practical. The

next section focuses on some theoretical benefits of OBA.

3.3 Theoretical Benefits of OBA

OBA generates a variety of benefits when compared to the traditional implementation of

BB. For half of the children generated by OBA, the dimension of the LR is reduced by at

least one. Whenever there are two noninteger values selected for branching, OBA reduces

the dimension of the LR by two in four of the children generated. For the children where

the dimension is not reduced, it is shown that the upper bound for the objective value is

less than or equal to the upper bound for the objective bound for children that reduce the

dimension of the IP.

Finally, it is shown that OBA can evaluate at most n of the four equality children during

a single dive before fathoming a node. This bound can be reduced to bn
2
c when there are

two noninteger values for every iteration (with one interation containing only one noninteger

value if n is odd).

Theorem 3.3.1. If OBA creates children, TLLe
p , TGLe

p , TLGe
p , or TGGe

p , then the dimension

of these four children’s spaces are at least one less than the dimension of the parent’s feasible

space.

Proof. At an iteration of OBA, assume that node Tp is branched upon creating the four

children TLLe
p , TGLe

p , TLGe
p , and TGGe

p . Since Tp is branched, there exists an x
∗Tp
i ∈ R\Z.

Thus, TLLe
p , TGLe

p , TLGe
p , and TGGe

p set xi to either β1 or β1 + 1 during the branching step.

The four children are similar, so here only TLLe
p is considered.

Assume TLLe
p has a feasible solution. Clearly, x

∗TLLe
p

i = β1. Thus, Tp’s feasible space

includes a vector between x∗T
LLe
p and x∗Tp . Clearly, TLLe

p no longer has this vector as a

feasible vector and so the dimension must have decreased by at least one.

36

Clearly if there is no feasible solution to the TLLe
p , then the dimension of TLLe

p is −1.

Since there exists a feasible solution to Tp, its dimension must be at least 0 and the result

follows.

Theorem 3.3.1 shows that the four leftmost children of OBA reduce the dimension of

the problem by at least one. The four leftmost children actually reduce the dimension of

the problem by at least two whenever there are two branching noninteger variables. By

reducing the dimension of the problem, the complexity of each child is reduced which often

times leads in a reduction in the amount of time to solve each node. In addition, forcing

a variable to be constant creates a simplified IP that would take fewer iterations of BB to

evaluate than constraints that only create new upper and lower bounds.

Let ub(zT
abq
p) denote the upper bound for the objective value z∗T

abk
p for a, b ∈ {L,G}

and k ∈ {i, e}. Theorem 3.3.2 shows that ub(zT
abe
p) ≥ ub(zT

abi
p) whenever branching on two

distinct variables with noninteger values. This is accomplished by generating ub(zT
abe
p) and

an upper bound for ub(zT
abi
p) for each of the eight children generated by OBA. It is assumed

that the reader has a basic understanding of linear programming including the subjects

of tableaus, basic variables, dual feasibility and reduced costs. For further reading on the

subject, see4.

Theorem 3.3.2. When branching on two distinct variables with noninteger values, ub(zT
abe
p) ≥

ub(zT
abi
p).

Proof. Let (z∗Tp , x∗Tp) be an optimal solution to Tp’s linear program. Let cπ = {cπ1 , cπ2 , ..., cπn+m,

z∗Tp} denote the objective row in the simplex tableau corresponding to the solution for

Tp where indices n + 1 to n + m represent the slack variables for the constraints. Due

to optimality cπk ≥ 0 ∀ k = 1, ...,m + n and cπk = 0, if xk is basic in x∗Tp . Let a′k =

{a′k,1, a′k,2, ..., a′k,n+m, x
∗Tp
k } denote the row in T p’s optimal tableau corresponding to the ba-

sic variable xk. Clearly, a′k,l = 0 if l 6= k and xl is basic. When branching on xi and xj,

there exists an a′i and a′j since both values are noninteger and therefore basic.

37

The proof continues by finding a bound on the equality children. Without loss of general-

ity, it is sufficient to only consider TLLe
p and TLLi

p . The other three cases are identical under

some straightforward substitution. To evaluate the child TLLe
p , OBA forces the variables xi

and xj to be bx∗Tpi c and bx∗Tpj c, respectively.

To evaluate TLLe
p , it suffices to solve the following LP:

Maximize z∗T
LLe
p =

∑n+m
k=1 −cπkx′k

subject to
∑n+m

k=1 a
′
lk
x′k = x

∗Tp
l ∀ l ∈ [1,m] ∩ Z

x′i = bx∗Tpi c

x′j = bx∗Tpj c

x ≥ 0.

To generate an upper bound TLLe
p , the above LP is relaxed to form the following LP:

Maximize z′′ =
∑n+m

k=1 −cπkx′k
subject to

∑n+m
k=1 a

′
ik
x′k = x

∗Tp
i∑n+m

k=1 a
′
jk
x′k = x

∗Tp
j

x′i = bx∗Tpi c

x′j = bx∗Tpj c

x ≥ 0.

Trivially, z′′ ≥ z∗T
LLe
p and ub(zT

LLe
p) = z′′.

Next, ub(zT
LLi
p) is found. To evaluate the child TLLi

p , OBA forces the variables xi and

xj to be less than or equal to bx∗Tpi c and bx∗Tpj c, respectively.

To evaluate TLLi
p , the following LP must be solved:

Maximize z∗T
LLi
p =

∑n+m
k=1 −cπkx′k

subject to
∑n+m

k=1 a
′
lk
x′k = x

∗Tp
l ∀ l ∈ [1,m] ∩ Z

x′i ≤ bx
∗Tp
i c

x′j ≤ bx
∗Tp
j c

38

x′i + x′j ≤ x
∗Tp
i + x

∗Tp
j − 1

x ≥ 0.

An upper bound is generated for z∗T
LLi
p by solving the following relaxed LP:

Maximize z′ =
∑n+m−2

k=1 −cπkx′k
subject to

∑n+m
k=1 a

′
ik
x′k = x

∗Tp
i∑n+m

k=1 a
′
jk
x′k = x

∗Tp
j

x′i ≤ bx
∗Tp
i c

x′j ≤ bx
∗Tp
j c

x ≥ 0.

Trivially, z′ ≥ z∗T
LLi
p and ub(zT

LLi
p) = z′. Consider relaxing this problem such that the

third constraint does not have to be satisfied. Since α′ii , α
′
jj

= 1, the right hand side of the

first two constraints are greater than zero, cπi , cπj = 0 and cπ ≥ 0, then there trivially must

be an optimal solution where x′i and x′j at their upper bounds. As a result the problem can

be changed to the following:

Maximize z′′ =
∑n+m−2

k=1 −cπkx′k
subject to

∑n+m
k=1 a

′
ik
x′k = x

∗Tp
i∑n+m

k=1 a
′
jk
x′k = x

∗Tp
j

x′i = bx∗Tpi c

x′j = bx∗Tpj c

x ≥ 0.

Note that this is the same problem generated when finding ub(zT
LLe
p). Trivially, z′′ ≥ z′.

As a result, ub(zT
LLe
p) = z′′ ≥ z′ = ub(zT

LLi
p).

Theorem 3.3.2 suggests that the children with equality constraints are likely to have

higher objective values than children with inequality constraints. In addition, by Theo-

39

rem 3.3.1, children with equality constraints are typically easier to solve than children with

inequailty constraints since children with equality constraints reduce the number of vari-

ables in the problem while children with inequality constraints often increase the basis by

one due to adding an additional constraint. These two theorems combined suggest that

children with higher objective values are easier to solve than children with lower objective

values. By using a search strategy such as best bound, it is likely that many of the children

that are more difficult to solve will be fathomed due to the existance of a superior integer

solution.

Theorem 3.3.3. OBA uses at most n of the children with superscripts LLe, GLe, LGe, or

GGe consecutively before fathoming a pendant node.

Proof. Each of the branching steps described by the superscripts LLe, GLe, LGe, and GGe

set at least one of the variables to some constant not currently required by the constraints.

This reduces the number of variables by at least one. It trivially follows that at most n of

these branches can occur.

It is important to note that by adapting the algorithm that this theorem could be

improved to say that at most dn
2
e of the children with superscripts LLe, GLe, LGe, or GGe

consecutively before fathoming a pendant node. However, this would require that neither of

the two new equality constraints added to the IP were redundant. To do this, any time there

was only one noninteger variable, the branching tree would have to be checked to ensure

the second variable selected for branching was not already forced to be constant by a prior

branch. This also occurs when every iteration has at least two noninteger values. The next

chapter provides computational evidence to support the thoretical benefits presented here.

40

Chapter 4

Computational Results for the
Octanary Branching Algorithm

The Octanary Branching Algorithm (OBA) is a new branching algorithm that has shown

theoretical benefits over traditional branch and bound. This chapter contains a computa-

tional study supporting these theoretical findings. OBA was able to find the first, second

and third integer solution with 64.8%, 27.9% and 29.3% fewer nodes evaluated, respectively,

than CPLEX. These integers were 44.9%, 54.7% and 58.2% closer to the optimal solution,

respectively, when compared to CPLEX.

The C programming language was used to run OBA. Problems were solved using ILOG

CPLEX 10.08. Given that CPLEX has been developed and improved over the course of

many years, it is unlikely to match the efficiency of the data retrieval and storage. As

a result, only the number of nodes evaluated is considered in this computational study.

This is reasonable as both OBA’s and CPLEX’s branching steps trivially take O(n) time

and constant space and O(d) to load constraints where d is the depth of the node being

evaluated.

The problems used for this study are multidimensional knapsack problems. Consider-

ations were taken from Chvatal-Hard Problems6 and a test bank5 with multidimensional

knapsack problems to generate problems for OBA. The IP’s used for this study take the

form of maximize
∑n

i=1 cixi subject to
∑n

i=1 aijxi ≤ bj ∀ j ∈ [1,m] ∩ Z and xi ∈ [0, 20] ∩ Z.

41

The aij are integer and are generated using a discrete uniform distribution with paramaters

0 and 1000. The right hand side bj is calculated using bj = 10
∑n

i=1 aij ∀ j ∈ [1,m] ∩ Z.

The objective function coefficients, ci, are calculated using ci = ui +
∑m

i=1
aij
m
∀ i ∈ [1, n]∩Z

where ui is a random integer from a uniform discrete distribution with paramters 0 and 500.

These problems are selected because the solution times are neither trivial nor prohibitively

high.

First, OBA was compared to CPLEX’s branching algorithm to determine the ability to

quickly find quality integer solutions. In order to strictly test the quality of the branching

structures, CPLEX’s abilities to presolve nodes and apply various cuts and heuristics were

disabled and no priority was used for variable selection. For both algorithms, depth first left

was specified. Three sets of problems with 100 variables and 10 constraints, 250 variables

and 25 constraints, and 500 variables and 50 constraints were considered.

When evaluating problems with 100 variables and 10 constraints, OBA outperforms

CPLEX in nearly every instance. Only in problem j was CPLEX’s first integer solution

(the 118th node was .3150% from optimal) superior to OBA’s first integer solution (the 39th

node was .3322% from optimal). However, OBA’s second integer found (the 40th node was

.2328% from optimal), exceeded CPLEX’s best early solutions. The full table of results can

be seen in Table 4.1.

When evaluating problems with 250 variables and 25 constraints, OBA finds the first

integer with 58.4% fewer nodes with an average value 45.0% closer to the actual optimal

value than CPLEX. In the only instance in which CPLEX finds a superior first integer

solution (problem i), OBA manages to find a better integer value in fewer nodes.

OBA again outperforms CPLEX when evaluating problems with 500 variables and 50

constraints. For this case, OBA was superior to CPLEX for every instance. There were

some instances, however, in which OBA was able to find a second or third integer solution

prior to evaluating 100,000 nodes.

For the first three problems in each set, information on the first 50,000 nodes evaluated

42

was collected. For information on all nine problems plotted, see the appendix. Figure 4.1

suggests that OBA finds quality integer solutions more quickly than BB.

Although OBA typically finds integer solutions with fewer nodes than BB, BB tends to

solve the problems faster. It is believed that this is due to OBA’s massive enumeration tree.

At a depth of d, OBA has up to 8d unevaluated nodes (compared to BB’s 2d). When the

tree is sufficiently deep, OBA must fathom 8 nodes per parent, but BB only needs to fathom

2. Thus, OBA spends a substantial amount of time generating infeasible and inferior nodes.

It is for this reason that OBA is suggested to only be used as a warm start or for random

diving.

Overall, OBA shows to be computationally superior than CPLEX at quickly finding

quality integer solutions. OBA was able to find the first, second and third integer solutions

with 64.8%, 27.9% and 29.3% fewer nodes than CPLEX. In addition, these integers were

44.9%, 54.7% and 58.2% closer to the optimal solution, respectively, when compared to

CPLEX.

43

Table 4.1: 1st, 2nd and 3rd Integers Found with 100 Variables and 10 Constraints

1st Int Found 2nd Int Found 3rd Int Found

Prob Node Gap Node Gap Node Gap Optimal

a oba 35 0.2530% 36 0.1437% 248 0.1373% 1879428
a cplex 126 0.4926% 506 0.4776% 514 0.4719% 1879428

b oba 33 0.1474% 37 0.1447% 49 0.1428% 1861953
b cplex 95 0.1706% 115 0.1697% 118 0.1633% 1861953

c oba 69 0.2239% 90 0.2138% 139 0.2093% 1843446
c cplex 97 0.4114% 101 0.4109% 108 0.4104% 1843446

d oba 32 0.1703% 3591 0.1669% 5103 0.1635% 1864303
d cplex 126 0.7193% 3100 0.7173% 3332 0.7151% 1864303

e oba 31 0.1779% 32 0.0956% 593 0.0876% 1857056
e cplex 104 0.2351% 107 0.2292% 113 0.2256% 1857056

f oba 32 0.1637% 573 0.0976% 749 0.0959% 1880600
f cplex 139 0.5602% 183 0.5559% 265 0.5425% 1880600

g oba 35 0.2649% 36 0.1660% 37 0.1614% 1857644
g cplex 127 0.3072% 192 0.3045% 268 0.3025% 1857644

h oba 65 0.2221% 72 0.2199% 79 0.2034% 1863576
h cplex 123 0.2411% 154 0.2366% 158 0.2363% 1863576

i oba 34 0.2410% 35 0.1450% 44 0.1439% 1857345
i cplex 90 0.2535% 447 0.2495% 1541 0.2382% 1857345

j oba 39 0.3322% 40 0.2328% 234 0.2238% 1869292
j cplex 118 0.3150% 122 0.3089% 176 0.2995% 1869292

Avg oba 40.5 0.2196% 454.2 0.1626% 727.5 0.1569% 1863464.3
Avg cplex 114.5 0.3706% 502.7 0.3660% 659.3 0.3605% 1863464.3

44

Table 4.2: 1st, 2nd and 3rd Integers Found with 250 Variables and 25 Constraints

1st Integer Found 2nd Integer Found 3rd Integer Found

Prob Node Gap Node Gap Node Gap Optimal

a oba 82 0.1096% 102153 0.1090% 119845 0.1080% 4694496
a cplex 251 0.1956% 1572 0.1935% 1621 0.1920% 4694496

b oba 81 0.1095% 82 0.0775% 83 0.0745% 4655554
b cplex 291 0.2382% 113838 0.2325% 113863 0.2319% 4655554

c oba 159 0.1457% 166 0.1444% 187 0.1437% 4637609
c cplex 337 0.2889% 342 0.2867% 351 0.2864% 4637609

d oba 158 0.1884% 165 0.1849% 179 0.1829% 4649944
d cplex 336 0.3637% 444 0.3631% 547 0.3630% 4649944

e oba 83 0.1395% 84 0.0998% 85 0.0987% 4674379
e cplex 288 0.2014% 1560 0.2002% 1979 0.1987% 4674379

f oba 82 0.1583% 83 0.1209% 205 0.1196% 4644373
f cplex 250 0.3209% 5171 0.3208% 5520 0.3207% 4644373

g oba 79 0.1143% 80 0.0740% 124 0.0736% 4669568
g cplex 306 0.2952% 362 0.2950% 423 0.2946% 4669568

h oba 163 0.1570% 170 0.1483% 476 0.1474% 4669567
h cplex 315 0.2511% 317 0.2497% 331 0.2481% 4669567

i oba 172 0.1571% 179 0.1478% 202 0.0976% 4658365
i cplex 265 0.1429% 812 0.1416% 4882 0.1412% 4658365

j oba 159 0.1017% 166 0.1004% 173 0.0999% 4689443
j cplex 290 0.2155% 698 0.2154% 842 0.2145% 4689443

Avg oba 121.8 0.1381% 10332.8 0.1207% 12155.9 0.1146% 4664329.8
Avg cplex 292.9 0.2513% 12511.6 0.2498% 13035.9 0.2491% 4664329.8

45

Table 4.3: 1st, 2nd and 3rd Integers Found with 500 Variables and 50 Constraints

1st Integer Found 2nd Integer Found 3rd Integer Found

Prob Node Gap Node Gap Node Gap Optimal

a oba 164 0.0987% 327 0.0984% 334 0.0983% 9282051
a cplex 518 0.2109% 540 0.2104% 548 0.2098% 9282051

b oba 164 0.0814% 408 0.0806% 6792 0.0805% 9297789
b cplex 701 0.3071% 1186 0.3070% 1865 0.3070% 9297789

c oba 162 0.1002% 374 0.0997% 444 0.0991% 9343215
c cplex 513 0.1939% 576 0.1934% 829 0.1930% 9343215

d oba 167 0.1025% ——— ——— 9286651
d cplex 591 0.2486% 595 0.2479% 639 0.2479% 9286651

e oba 168 0.1098% 169 0.0908% 1813 0.0894% 9266250
e cplex 601 0.2024% 814 0.2019% 32307 0.2018% 9266250

f oba 175 0.1345% 176 0.1150% 177 0.1141% 9336665
f cplex 568 0.2324% 594 0.2322% 1511 0.2322% 9336665

g oba 176 0.1267% 177 0.1102% 185 0.1077% 9323660
g cplex 636 0.2428% 639 0.2428% 718 0.2411% 9323660

h oba 157 0.0740% 158 0.0548% ——— 9375043
h cplex 531 0.1585% 543 0.1582% 624 0.7337% 9375043

i oba 168 0.0906% 169 0.0705% 173 0.0704% 9303255
i cplex 523 0.2199% 3059 0.2198% 3153 0.2192% 9303255

j oba 314 0.1247% 321 0.1244% 328 0.1239% 9319619
j cplex 521 0.1527% 14359 0.1527% 21261 0.1526% 9319619

Avg oba 181.5 0.1043% 253.2 0.0938% 1280.8 0.0979% 9313419.8
Avg cplex 570.3 0.2169% 2290.5 0.2166% 6345.5 0.2738% 9313419.8

46

Figure 4.1: Gap Between Best Integer Solution and Optimal Solution as a Function of
Nodes Evaluated for prob.100.10.a.txt

Table 4.4: Summary of 1st, 2nd and 3rd Integers Found

1st Integer Found 2nd Integer Found 3rd Integer Found

Prob Node Gap Node Gap Node Gap

Avg for 100.10 oba 40.5 0.2196% 454.2 0.1626% 727.5 0.1569%
Avg for 100.10 cplex 114.5 0.3706% 502.7 0.3660% 659.3 0.3605%

Avg for 250.25 oba 121.8 0.1381% 10332.8 0.1207% 12155.9 0.1146%
Avg for 250.25 cplex 292.9 0.2513% 12511.6 0.2498% 13035.9 0.2491%

Avg for 500.50 oba 181.5 0.1043% 253.2222 0.0938% 1280.75 0.0979%
Avg for 500.50 cplex 570.3 0.2169% 2290.5 0.2166% 6345.5 0.2738%

Average oba 114.6 0.1540% 3680.074 0.1257% 4721.383 0.1231%
Average cplex 325.9 0.2796% 5101.6 0.2775% 6680.233 0.2945%

Improvement Over cplex 64.8% 44.9% 27.9% 54.7% 29.3% 58.2%

47

Chapter 5

Conclusion

This thesis introduced a new branching algorithm called the Octanary Branching Algorithm.

The primary advancement of OBA is the introduction of equality constraints close to the

parent’s solution. OBA has a variety of theoretical benefits and computational benefits over

traditional branch and bound.

Theoretically, OBA causes half of the children to have a dimension at least one less than

the dimension of its parent. Additionally, for children that do not reduce the dimension of

the problem, it has been shown that the upper bound for the objective value is lower than

the upper bound generated for children that reduce the dimension of the linear relaxation.

OBA also ensures that only n of the four left most children can be used before fathoming a

node.

OBA was able to find the first, second and third integer solution with 64.8%, 27.9% and

29.3% fewer nodes evaluated, respectively, than CPLEX. These integers were 44.9%, 54.7%

and 58.2% closer to the optimal solution, respectively.

5.1 Future Research

The work presented in this thesis generates a variety of new research questions. As a result,

there is future work that should be pursued to further advance branch and bound.

To date, selecting variables during the branching step by generating psuedo reduced

costs has been observed to increase the time it takes to solve an IP21. However, OBA

48

partitions the space such that the four right most children are likely to have significantly

worse objective values with the proper selection of branching variables. This raises the

question of whether it would be valuable to spend additional time in the branching step to

find the “best” variables to branch on.

Additionally, OBA demonstrates a superior ability to find integer solutions in spite of

the fact that it often takes more time to evaluate the entire tree. For these reason, it seems

highly likely that OBA would be extremely useful for the random diving process. By using

OBA strictly for random diving, users would be able to gain the benefit of being able to

find integer solutions quickly without having a tree that grows so rapidly.

Other branching structures with similar properties to OBA should also be explored.

OBA forces variables to be constant during the branching step in hopes of quickly finding

integer solutions. The branching structure generated is just one of an infinite number of

possibilities that could be used to force variables to become constant after a single interation.

The question of whether some other structure with potentially more or less variables could

generate better results still remains.

Another property of OBA is that the four children that create equality constraints rep-

resent an “inner layer” of the feasible region close to the parent’s LR while the four children

with inequality constraints represent the “outer layer.” Any additional layers would be

further from the parent’s solution and would be likely to have significantly worse objective

values. Could a branching scheme that creates more than two layers perform better than

OBA?

49

Bibliography

[1] T. Achterberg and A. Martin. Miplib 2003. Operations Research Letters, 34(4), 2006.

[2] N. Agin. Optimum seeking with branch and bound. Management Science, 13(4), 1966.

[3] J. Bailey, M. Iwen, and C. Spencer. On the design of deterministic matrices for fast

recovery of fourier compressible functions. SIAM Journal on Matrix Analysis and

Applications (SIMAX), 33, 2012.

[4] M. S Bazaraa, J. J. Jarvis, and H. D. Sherali. Linear Programming and Network Flows.

New Jersey: John Wiley & Sons Inc., 2005.

[5] P. Chu and J. Beasley. A genetic algorithm for the multidimensinoal knapsack problem.

Journal of Heuristics, 4, 1998.

[6] V. Chvátal. Hard knapsack problems. Operations Research, 28(6), 1980.

[7] W. Hamilton and M. Moses. An optimization model for corporate financial planning.

Operations Research, 21(3), 1973.

[8] IBM ILOG CPLEX Inc. Using CPLEX Callable Library. 2006. Version 10.0.

[9] K. O. Jörnsten and P. Värbrand. A hybrid algorithm for the generalized assignment

problem. Optimization, 22(2), 1991.

[10] R. Karp. Complexity of Computer Computations. R. E. Miller and J. W. Thatcher,

eds., Plenum Press, New York, 1972.

[11] L. Khachiyan. A polynomial time algorithm in linear programming. Soviet Math. Dokl.,

20, 1979.

50

[12] P. Krokhmal, S. Uryasev, and G. Zrazhevsky. Risk management for hedge fund porto-

lios: A comparative analysis of linear rebalancing strategies. The Journal of Alternative

Investments, 5(1), 2002.

[13] A. Land and A. Doig. An automatic method for solving discrete programming problems.

Econometrica, 28, 1960.

[14] E. Lee, T. Fox, and I. Crocker. Integer programming applied to intensitymodulated

radiation therapy treatment planning. Annals of Operations Research, 119, 2003.

[15] J. H. Lee. Theoretically and computationally improving branch and bround through

multivariate branching with internal cutting planes. Master’s thesis, Kansas State

University, 2010.

[16] M. Lustig, D. L. Donoho, and J. M. Pauly. Sparse mri: The application of compressed

sensing for rapid mr imaging. Magnetic Resonance in Medicine, 58(6), 2007.

[17] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly. Compressed sensing mri.

IEEE Signal Processing Magazine, 25(2), 2008.

[18] J. Ma. Single-pixel remote sensing. IEEE Geoscience and Remote Sensing Letters,

6(2), 2009.

[19] J. Ma. Compressed sensing for surface characterization and metrology. IEEE Transac-

tions on Instrumentation and Measurement, 69(6), 2010.

[20] Mehrotra and S. Z. Li. Branching on hyperplane methods for mixed linear and convex

programming using adjoin lattices. Journal on Global Optimization, 2010.

[21] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. New

York: John Wiley & Sons Inc., 1999.

[22] P. Pendharkar and J. Rodger. Information tecnology capital budgeting using a knapsack

problem. International Transactions in Operations Research, 13, 2006.

51

[23] R. L. Magananti R. K. Ahuja and J B. Orlin. Network Flows: Theory, Algorithms and

Applications. New Jersey: Prentice-Hall Inc., 1993.

[24] B. Ryan and D. Foster. Computer Scheduling of Public Transport, chapter An integer

programming approach to scheduling, pages 269–280. A. Wren eds., North-Holland

Publishing Company, 1981.

[25] N. Shental, A. Amir, and O. Zuk. Identification of rare alleles and their carriers using

compressed se(que)nsing. Nucleic Acids Research, 38(19), 2010.

[26] G. Singh, D. Sier, A. T. Ernst, O. Gavrillouk, R. Oyston, and T. Giles andP. Welgama.

A mixed integer programming model for long term capacity expansion planning: A case

study from the hunter valley coal chain. European Journal of Operational Research,

220(1), 2012.

[27] J. Stahl, N. Kong, S. Shechter, S. Shaefer, and S. Roberts. A methodological framework

for optimally reorganizing liver transplant regions. Medical Decision Making, 2535,

2005.

[28] Subramanian, R. Scheff, R. Quillinan, J. Wiper, and R. Marsten. Cold-start: fleet

assignment at delta airlines. Interfaces, 24(1), 1994.

[29] R. J. Walker. An enumerative technique for a class of combinatorial problems. Pro-

ceedings of Symposia in Applied Mathematics, Math 10, 1960.

52

Appendix A

Appendix

Figure A.1: Gap Between Best Integer Solution and Optimal Solution as a Function of
Nodes Evaluated for prob.100.10.a.txt

53

Figure A.2: Gap Between Best Integer Solution and Optimal Solution as a Function of
Nodes Evaluated for prob.100.10.b.txt

Figure A.3: Gap Between Best Integer Solution and Optimal Solution as a Function of
Nodes Evaluated for prob.100.10.c.txt

54

Figure A.4: Gap Between Best Integer Solution and Optimal Solution as a Function of
Nodes Evaluated for prob.250.25.a.txt

Figure A.5: Gap Between Best Integer Solution and Optimal Solution as a Function of
Nodes Evaluated for prob.250.25.b.txt

55

Figure A.6: Gap Between Best Integer Solution and Optimal Solution as a Function of
Nodes Evaluated for prob.250.25.c.txt

Figure A.7: Gap Between Best Integer Solution and Optimal Solution as a Function of
Nodes Evaluated for prob.500.50.a.txt

56

Figure A.8: Gap Between Best Integer Solution and Optimal Solution as a Function of
Nodes Evaluated for prob.500.50.b.txt

Figure A.9: Gap Between Best Integer Solution and Optimal Solution as a Function of
Nodes Evaluated for prob.500.50.c.txt

57

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Research Contribution
	Thesis Outline

	Background Information
	IP Definitions
	Branch and Bound
	Search Strategies
	Branching Variable Selection
	A Branch and Bound Example
	Hyperplane Branching
	Quaternary Hyperplane Branching Algorithm
	A Quaternary Hyperplane Branching Algorithm Example

	The Octanary Branching Algorithm (OBA)
	OBA
	An Octanary Branching Example

	Theory of OBA
	Theoretical Benefits of OBA

	Computational Results for the Octanary Branching Algorithm
	Conclusion
	Future Research

	Bibliography
	Appendix

