
Int. J. Operational Research, Vol. x, No. x, 201X 1

Octanary Polyhedral Branch and Bound for Integer
Programs

James P. Bailey
Department of Engineering Systems and Design,
Singapore University of Technology and Design,
Singapore
E-mail: james_bailey@sutd.edu.sg

Todd Easton

Department of Industrial and Manufacturing Systems Engineering,
Kansas State University,
Manhattan, KS, USA
E-mail: teaston@ksu.edu

Fabio Vitor

Department of Mathematics,
University of Nebraska at Omaha,
Omaha, NE, USA
E-mail: fabioftv@ksu.edu

Abstract: This paper introduces the octanary branching algorithm (OBA), a
polyhedral branching technique to solve integer programs. Unlike the traditional
branch and bound algorithm, each of OBA’s branching nodes generates eight
children instead of two. Four of them are created by equality constraints, while the
other four use inequalities. This branching strategy allows a dimension reduction
of the linear relaxation space of the four equality children, which should enable
OBA to find quality integer solutions sooner than the branch and bound algorithm.
Computational experiments showed that the branch and bound algorithm required
over one billion nodes to identify a solution that is at least as good as the solution
found by OBA after only half a million nodes. Consequently, OBA should replace
the branch and bound algorithm during the first portion of the branching tree, be
used to identify a warm start solution, or be implemented as a diving strategy.

Keywords: Branch and Bound; Hyperplane Branching; Branching Polyhedra;
Random Diving; Integer Programming.

Reference to this paper should be made as follows: Bailey, J.P., Easton, T. and
Vitor, F. (201X) ‘Octanary polyhedral branch and bound for integer programs’,
International Journal of Operational Research, Vol. x, No. x, pp.xxx–xxx.

Biographical notes: James Bailey is a Postdoctoral Researcher in the Engineering
Systems Design Pillar at the Singapore University of Technology and Design.
He obtained his Ph.D. in Algorithms, Combinatorics, and Optimization from
the Georgia Institute of Technology, his M.S. in Industrial Engineering and
B.S. degrees in both Mathematics and Industrial Engineering from Kansas

Copyright © 201X Inderscience Enterprises Ltd.

2 J.P. Bailey, T. Easton, and F. Vitor

State University. His main research areas are machine learning, combinatorial
optimization, social choice, and game theory.

Todd Easton received a B.S. in Mathematics with a minor in Statistics from
Brigham Young University, a M.S. in Operations Research from Stanford
University, and a Ph.D. in Industrial Engineering from Georgia Institute of
Technology. He worked as a Postdoctoral Fellow at Georgia Institute of
Technology, and then joined the department of Industrial and Manufacturing
Systems Engineering at Kansas State University. He is currently an Associate
Professor and also a University Distinguished Teaching Scholar. His research
interests are in combinatorial optimization and teaching techniques.

Fabio Vitor is an Assistant Professor in the department of Mathematics at the
University of Nebraska at Omaha. He received a Ph.D. in Industrial Engineering
and a M.S. in Operations Research from Kansas State University, and a B.S.
in Industrial Engineering from Maua Institute of Technology (Brazil). He also
worked for Monsanto, Kalmar (Cargotec Corporation), and Volkswagen. His
research interests include the development of algorithms to more quickly solve
continuous and discrete optimization problems such as linear, nonlinear, and
integer programs.

1 Introduction

Integer programming is one of the most important classes of optimization problems. For
decades, integer programs have been used to model numerous complex systems in the public
and private sectors. Quickly finding an optimal solution to these mathematical models is vital
to decision makers in order to provide better products and services to meet consumer needs.
Because of the importance of integer programs, several techniques have been developed
throughout the years to more quickly solve these models. This paper presents the octanary
branching algorithm, a new technique that can help decrease the time to solve integer
programming problems.

Formally, define an integer program (IP) as:

maximize z = cTx
subject to Ax ≤ b

x ∈ Zn
+,

where n and m ∈ Z+, c ∈ Rn, A ∈ Rm×n, and b ∈ Rm. The feasible region of an IP
is denoted as P = {x ∈ Zn

+|Ax ≤ b} and its optimal solution is z∗IP along with x∗IP .
Moreover, a bounded integer program is an IP with the additional constraints x ≤ u where
u ∈ Rn. For every IP, the corresponding linear relaxation (LR) problem is defined by:

maximize z = cTx
subject to Ax ≤ b

x ∈ Rn
+.

The feasible region of the linear relaxation problem is a polyhedron denoted as PLR =
{x ∈ Rn

+|Ax ≤ b}, and its optimal solution is z∗LR along with x∗LR.
Integer programming has been used to model and manage a wide array of real world

problems. These applications are frequently identified in several industries. For instance,

Octanary Polyhedral Branch and Bound for Integer Programs 3

IPs have optimized financial planning operations (Hamilton and Moses, 1973; Krokhmal
et al., 2002; Pendharkar and Rodger, 2006; Singh et al., 2012), scheduling and allocation
of resources (Subramanian et al., 1994; Toffolo et al., 2016; Vuthipadadon and Olafsson,
2007; Yin et al., 2017), facility location problems (Kose and Karabay, 2016; Noor-E-Alam
et al., 2014), and production planning (Abraham and Rao, 2008; Ben-Arieh et al., 2009;
Kashkoush et al., 2012).

Integer programs also play an important role when it comes to supply chain (Duong and
Bui, 2018; Limpianchob, 2017; Salam et al., 2015), transportation (Albashabsheh and Heier
Stamm, 2019; Delli and Sinha, 2019; Gifford et al., 2018; Sinha et al., 2016), and health
care (Heier Stamm et al., 2017; Lee et al., 2003; Muggy and Heier Stamm, 2017; Stahl et
al., 2005). Even complex systems such as power generation (Antunes et al., 2004; Carrion
and Arroyo, 2006; Zhan and Zheng, 2018) have benefited from integer programming.
Other usage of IPs also include compressed sensing matrices (Bailey et al., 2012) and their
application in metrology (Ma, 2010), high resolution single pixel cameras (Ma, 2009), and
magnetic resonance imaging (Lustig et al., 2007, 2008).

Unfortunately, IPs are NP-hard (Karp, 1972) and an exponential amount of time may
be required to optimally solve this class of mathematical models. Integer programs are
frequently solved by the branch and bound algorithm (Land and Doig, 1960), but other
critical techniques have also been developed. For example, cutting planes (Balas and Zemel,
1978; Chvátal, 1973; Gomory, 1969; Hickman and Easton, 2015a,b; Vitor, 2015; Vitor and
Easton, 2016, 2019), column generation (Ford and Fulkerson, 1958; Gilmore and Gomory,
1961, 1963; Lübbecke and Desrosiers, 2005; Nemhauser, 2012), and decomposition or
partitioning algorithms (Benders, 1962; Conejo et al., 2006; Dantzig and Wolfe, 1960, 1961;
Ergünes et al., 2017) are common methods to speed up the solution time of IPs.

The branch and bound algorithm has changed little since it was first created. Some
improvements include various branching strategies that indicate which node should be
evaluated next and strategies that use variables with certain properties to branch (see Section
2 for additional details). However, of the existing strategies, there is no indication on which
is best as the performance of a strategy varies greatly between problem classes and even
instances in the same class.

The motivation of this paper is derived from the attempt to find quality integer solutions
quickly in a branching tree. The objective of this research is to create a new branching
algorithm where the branching variables assume integer values that are relatively close to
the linear relaxation solution of the corresponding parent’s node.

This paper’s primary contribution is the octanary branching algorithm, a new method
that can help improve the solution time of IPs. This scheme’s structure generates eight
children per parent instead of two from the branch and bound algorithm. The dimension
of the feasible linear relaxation space of four of the eight children nodes generated by the
octanary branching algorithm is strictly less than the dimension of their parent’s feasible
linear relaxation space. Computational experiments demonstrate that the octanary branching
algorithm identifies quality integer solutions earlier than the branch and bound algorithm.
Consequently, the octanary branching algorithm should be implemented at the beginning
of the branching tree, as a warm start solution, or as a diving scheme.

The remainder of the paper is organized as follows. Section 2 describes different existing
branching techniques so the reader can understand how the proposed method advances
the knowledge in integer programming. Section 3 presents the theoretical and algorithmic
foundation of the octanary branching algorithm. Section 4 describes the implementation and

4 J.P. Bailey, T. Easton, and F. Vitor

results of a computational study developed to test the effectiveness of the new algorithm.
Section 5 concludes the paper and presents potential topics for future research.

2 Branching Techniques

Solving integer programming problems is a critical research topic in operations research.
Numerous approaches have been discovered since the late 1950s. This section provides a
small sample of the research dedicated to branching techniques. This includes the well-
known branch and bound algorithm, different search strategies, selection of branching
variables, and other advanced topics such as hyperplane and polyhedra branching. For
further reference on the presented topics and other research on branching methods not
discussed in this paper, the work of Nemhauser and Wolsey (1999), Linderoth and
Savelsbergh (1999), Achterberg et al. (2005), Conforti et al. (2014), and Morrison et al.
(2016) are suggested.

2.1 Branch and Bound Algorithm

The primary method to solve IPs is the branch and bound algorithm (BB), created by Land
and Doig (1960). This technique is guaranteed to find an optimal solution to IPs, if one
exists, in finite time. The branch and bound algorithm generates a potentially exponential
tree structure of bounds and constraints where each node of the branching tree corresponds
to a linear relaxation problem.

Given an IP, BB begins by storing the IP’s linear relaxation in the root node T1. An
unfathomed node Tp is selected and its linear relaxation problem is solved to obtain z∗Tp

and x∗Tp . If x∗Tp /∈ Zn
+, then BB finds an i ∈ {1, ..., n} such that x∗Tp

i /∈ Z+. Two new
nodes from Tp are generated and these nodes are referred to as Tp’s children. Both children
begin with Tp’s linear relaxation problem. The first less than or equal to child, TL

p , adds
the constraint xi ≤ bx

∗Tp

i c. The second greater than or equal to child, TG
p , includes the

constraint xi ≥ bx
∗Tp

i c+ 1. This type of branching is referred in this paper as standard
branching.

The branch and bound algorithm stores the best known integer solution, zbest and xbest.
If z∗LR > zbest and x∗LR ∈ Zn

+, then zbest and xbest are replaced with z∗LR and x∗LR,
respectively. The branch and bound algorithm continues until all nodes are fathomed. A node
is fathomed when its linear relaxation problem is infeasible, x∗LR ∈ Zn

+, z∗LR is inferior
to the objective function value of the best known integer solution, or two children nodes
are created. When all nodes are fathomed, BB terminates and reports an optimal solution
if one exists. If there is no solution, then BB reports that the IP is infeasible. One can see
that the motivation for this paper is to improve upon the simplistic branching constraints of
xi ≤ bx

∗Tp

i c and xi ≥ bx
∗Tp

i c+ 1.
The branching step of BB is indeterminate. During any iteration, there are many

unfathomed nodes that need to be evaluated. Selecting which node to evaluate can have
significant implications on the efficiency of the algorithm. Memory capacity becomes a
large issue when selecting a search strategy as the size of the tree can grow exponentially.
However, it is possible that the solution time will greatly increase when attempting to
use a strategy that decreases memory usage. Consequently, various search strategies used
alongside BB have been explored in order to decrease both the time to solve IPs and also

Octanary Polyhedral Branch and Bound for Integer Programs 5

the amount of memory usage. Generally, search strategies fall into the categories of depth
first, breadth first, or best bound.

2.2 Search Strategies

Depth first search is a method where BB evaluates a child node and keeps moving downward
through the tree until all ancestors are fathomed. Once a fathomed node is found, then BB
backtracks and repeats the process. Depth first strategies are typically given a direction to
explore first, such as left or right. Depth first search is a memory efficient method of exploring
the branching tree. Let the depth of any node be denoted as d with the root node having
a depth of d = 1. When evaluating a node at depth d, there are at most d+ 1 unevaluated
nodes remaining in the tree. Because the number of unevaluated nodes is linear with the
current depth of the node being evaluated, the amount of memory needed to store the tree is
small. In addition, depth first strategies tend to locate integer solutions or infeasible nodes
quickly resulting in many nodes being fathomed.

There is no guarantee, however, on the effectiveness of using a depth first strategy. It is
possible to spend a great deal of time diving to find an integer solution that fathoms very
few nodes in the tree. If an optimal solution does not appear as a descendant of a node, then
substantial effort is wasted fathoming that portion of the tree. These issues are typically
magnified when dealing with large problems.

Breadth first search is a strategy that evaluates all nodes at depth d prior to evaluating
any nodes at depth d+ 1. This alleviates the concern of whether or not the correct node
was selected to explore that is associated with depth first search. The primary downfall of
breadth first search is its inability to identify infeasible nodes or integer solutions. When
evaluating a node at depth d, there are at most 2d unevaluated nodes remaining in the tree.
With an exponential relationship between the depth and number of nodes, memory issues
rapidly become a limiting factor when attempting to solve IPs with breadth first search.

Many state-of-the-art commercial and open source mathematical programming solvers
frequently use some form of best bound strategy. Best bound uses the objective function
value as a means of determining which node of the tree to explore first. In this case, the
node with the best z∗LR is evaluated first. The thought behind this strategy is that a better
objective function value is the best candidate for enumeration. The logic follows that an
optimal integer solution would be the child of a node with a good objective function value.
Finding a good integer solution quickly can decrease the size of the current tree, which
prevents the need to evaluate many new nodes and leads to an improved solution time.

In an attempt to find a good integer solution quickly, a common practice is to use a
hybrid of depth first and best bound search known as random diving (IBM ILOG CPLEX
Optimization Studio CPLEX User’s Manual, 2016; Walker, 1960). In this strategy, BB
uses the best child search for a set number of iterations. At preset intervals, the algorithm
switches to depth first search until the path is fathomed. This method makes an attempt to
quickly discover a superior integer solution.

There is no indication as to which is the best search strategy as the performance varies
greatly between problem classes and even instances in the same class. While one strategy
may be effective for a certain class of problems, there is no guarantee that it will work well
for all problems.

6 J.P. Bailey, T. Easton, and F. Vitor

2.3 Branching Variable Selection

Prior to branching, BB must select a variable such that x∗Tp

i /∈ Z. Empirical evidence shows
that the choice of x∗Tp

i is vital to the amount of effort spent solving an IP (Nemhauser and
Wolsey, 1999). Often there exists a set of variables that when fixed at integer values, force
all other variable to be integers. Because there is no robust method of determining such
variables, often the priority of branching is user defined. Two common ways of selecting
priorities are through degradation and penalties (Achterberg et al., 2005; Linderoth and
Savelsbergh, 1999; Morrison et al., 2016).

Degradation attempts to estimate the change obtained in z∗Tp by forcing x∗Tp

i to be
integral. Suppose that x∗Tp

i is noninteger. Define f∗Tp

i such that x∗Tp

i = bx∗Tp

i c+ f
∗Tp

i .
By branching on x∗Tp

i , one would expect that the objective function value would decrease
by D−∗Tp

i = p
−∗Tp

i f
∗Tp

i for the left child and by D+∗Tp

i = p
+∗Tp

i (1− f∗Tp

i) for the right
child. In such a case, the coefficients p−∗Tp

i and p+∗Tp

i can be specified or estimated in
several different ways.

Penalties involve more taxing calculations to determine the coefficientsp−∗Tp

i andp+∗Tp

i

in order to generate a lower bound on the change in z∗Tp . Penalties have been extensively
used in early commercial and open source mathematical programming solvers. However,
empirical methods have shown that the cost of finding the penalties exceed the benefit of
the information given (Nemhauser and Wolsey, 1999).

Given D
−∗Tp

i and D
+∗Tp

i , it is common to select x∗Tp

i such that the minimum of
D
−∗Tp

i and D+∗Tp

i is maximized. The rationale is that maximizing the minimum decrease
in the objective function value will result in obtaining the optimal z∗ value more quickly.
Another common approach is to select x∗Tp

i such that the maximum of D−∗Tp

i and D+∗Tp

i

is maximized. The idea in doing this is that the branch with the lower objective function
value will quickly be fathomed by dominance.

2.4 Nonsimplistic Branching Techniques

Research has also investigated other advanced nonsimplistic branching strategies. Common
methods include the so-called hyperplane branching and branching polyhedra. Both
techniques typically involve branching on more than one single variable at each node of the
branching tree.

Hyperplane branching attempts to increase the efficiency of the enumeration tree by
branching on multiple variables. This technique follows a similar structure as BB. That
is, one child includes the constraint

∑n
i=1 αixi ≤ β and the other child has the constraint∑n

i=1 αixi ≥ β + 1 where α ∈ Zn and β ∈ Z. Typically, hyperplane branching requires
α to have at least two nonzero coefficients, but standard branching is a type of hyperplane
branching with exactly one nonzero coefficient.

While hyperplane branching has demonstrated potential good results (Jörnsten and
Värbrand, 1991; Mehrotra and Li, 2011; Ryan and Foster, 1981), the method is limited by
several factors. Unlike BB, which only stores the index of the branching variable and its
lower or upper bound, hyperplane branching stores the coefficient of each variable in each
node. Consequently, hyperplane branching linearly increases the size of the simplex basis
by the depth of the node. This typically results in an increase in the time to solve each linear
relaxation problem and escalates the memory requirements at each node.

Octanary Polyhedral Branch and Bound for Integer Programs 7

One common type of hyperplane branching is referred to as branching on sets. Given
S ⊆ N , two children are created. One child adds the hyperplane

∑
i∈S xi = 0 while the

other includes
∑

i∈S xi ≥ 1. A variation of this process is proposed by Easton et al. (2003)
where the idea is extended to numerous children for the root node. In this case, binary
integer programs are considered and some of the children have constraints

∑
i∈S xi = |S|,∑

i∈S xi = |S| − 1,
∑

i∈S xi = |S| − 2, and
∑

i∈S xi ≤ |S| − 3.
An alternate branching scheme is referred to as branching polyhedra. In this case, each

child solves an optimization problem subject to a polyhedron intersected with the parent’s
linear relaxation space. There is no restriction that requires the same family of branching
polyhedra for each parent. For simplicity and generality of code, this paper assumes that
any polyhedral branching step creates k children by intersecting the parent node’s feasible
linear relaxation space with the same family of polyhedra.

Easton and Lee (2012) showed that branching on polyhedra of any bounded IP terminates
in finite time as long as the following three conditions hold: (1) any noninteger linear
relaxation solution at the parent’s node must not be a feasible solution to the linear relaxation
problem of any of its k children; (2) every IP’s integer feasible solution must be in one of the
k branching polyhedra; (3) every extreme point for each of the branching polyhedra must
be integer. Furthermore, Easton and Lee developed the quaternary hyperplane branching
algorithm, which branches on four polyhedra. This method utilizes hyperplane branching
constraints and internal cutting planes to generate an efficient quaternary branching scheme.

Observe that the research developed for this paper is a branching polyhedra technique,
and is an advancement to the work of Easton and Lee. While the quaternary hyperplane
branching algorithm from Easton and Lee generates four children per parent’s node, the
octanary branching algorithm creates eight new nodes. Four of these nodes are created by
equality constraints while the other four by inequalities. The following section describes
the theoretical and algorithmic foundations of this new advancement.

3 Octanary Branching Algorithm

This section describes the octanary branching algorithm (OBA) and provides an example
to demonstrate its implementation. Theoretical results are presented to show that OBA
correctly solves any bounded IP in finite time. Additionally, some theoretical benefits of
OBA are provided. Preliminary results to this paper are also found in one of the author’s
thesis (Bailey, 2012).

Given an IP, OBA assigns the IP’s linear relaxation to T1. An unfathomed node, Tp, is
selected and solved to obtain zTp and xTp . The primary difference between OBA and BB
is the branching step of the algorithm. Denote the node being evaluated as the parent node
Tp. If x∗Tp /∈ Zn

+ and z∗Tp > zbest, then OBA finds an i and j ∈ {1, ..., n} such that x∗Tp

i ,
x
∗Tp

j /∈ Z+, and i 6= j. If no such j exists, then OBA selects any j 6= i ∈ {1, ..., n}. If the
IP has only one variable, then i = j = 1.

Eight new nodes are generated and each node becomes a child of Tp. Each child’s
feasible space takes Tp’s feasible region, denoted as Pp, and intersects one of the eight
polyhedra. The eight polyhedra are denoted as P abk

p where a or b specify less than or equal
to, or greater than or equal to constraints for xi and xj , and k specifies if the child has
equality or inequality constraints. That is, each parent has eight child nodes, which are
linear relaxation problems of the form:

8 J.P. Bailey, T. Easton, and F. Vitor

maximize z = cTx
subject to Pp ∩ P abk

p .

The eight branching polyhedra are formally defined in equations (1)-(8) where βi = bx
∗Tp

i c
and βj = bx

∗Tp

j c.

PLR
LLe

= {x ∈ Rn
+|xi = βi, xj = βj} (1)

PLR
GLe

= {x ∈ Rn
+|xi = βi + 1, xj = βj} (2)

PLR
LGe

= {x ∈ Rn
+|xi = βi, xj = βj + 1} (3)

PLR
GGe

= {x ∈ Rn
+|xi = βi + 1, xj = βj + 1} (4)

PLR
LLi

= {x ∈ Rn
+|xi ≤ βi, xj ≤ βj , xi + xj ≤ βi + βj − 1} (5)

PLR
GLi

= {x ∈ Rn
+|xi ≥ βi + 1, xj ≤ βj ,−xi + xj ≤ −βi + βj − 2} (6)

PLR
LGi

= {x ∈ Rn
+|xi ≤ βi, xj ≥ βj + 1, xi − xj ≤ βi − βj − 2} (7)

PLR
GGi

= {x ∈ Rn
+|xi ≥ βi + 1, xj ≥ βj + 1,−xi − xj ≤ −βi − βj − 3} (8)

OBA continues solving each node’s linear relaxation problem until all nodes are
fathomed. OBA follows the same fathoming rules as BB. However, a branching node is
fathomed once all eight children are created, instead of two. When all nodes are fathomed,
OBA terminates and reports an optimal solution if one exists. If there is no solution, then
OBA reports that the IP is infeasible. Algorithm 1 formally presents OBA.

Figure 1: OBA’s branching structure

The motivating factor behind this polyhedra branching structure is that the solution to
the four children closest to the parent’s linear relaxation solution have two variables set
to integer values. The outer four children, which only create bounds for the variables, are
pushed further from the parent’s optimal solution and are likely to have worse objective
function values. Figure 1 presents a graphic depiction of this polyhedra branching structure
in R2 without the intersection of the parent node’s feasible region.

Octanary Polyhedral Branch and Bound for Integer Programs 9

Algorithm 1 Octanary Branching Algorithm (OBA)

1: Let T ← {T1} be the enumeration tree where T1 is the IP’s linear relaxation;
2: zbest ← −∞ and q ← 1;
3: while there exists an unfathomed node in T do
4: Let Tp be any unfathomed node in T ;
5: Solve Tp;
6: if Tp is infeasible then
7: Tp ← fathomed;
8: end if
9: if x∗Tp ∈ Zn then

10: Tp ← fathomed;
11: if z∗Tp > zbest then
12: zbest ← z∗Tp ;
13: xbest ← x∗Tp ;
14: end if
15: end if
16: if z∗Tp ≤ zbest then
17: Tp ← fathomed;
18: end if
19: if Tp is unfathomed then
20: Select a distinct i and j ∈ {1, ..., n} such that x∗Tp

i and x∗Tp

j /∈ Z;
21: if there does not exist such a j then
22: if {1, ..., n} \ {i} 6= ∅ then
23: Let j ∈ {1, ..., n} \ {i};
24: end if
25: else
26: j ← i;
27: end if
28: Create eight children of Tp, nodes Tq+1 to Tq+8, such that each of these linear

relaxation problems are maximize z = cTx subject to Pp ∩ P abk
p for all

a, b, and k;
29: Tp ← fathomed;
30: q ← q + 8;
31: end if
32: end while
33: if zbest = −∞ then
34: return IP is infeasible;
35: else
36: return zbest and xbest

37: end if

Prior to providing the main theoretical contributions of OBA, Example 1 demonstrates
its implementation. The example has no priority for branching variables, and depth first left
search is chosen to evaluate the tree.

10 J.P. Bailey, T. Easton, and F. Vitor

Example 1: Consider the following IP:

maximize z = 5x1 + 4x2
subject to 2x1 + 6x2 ≤ 15

4x1 + 3x2 ≤ 15
x1 , x2 ∈Z+.

The first iteration of OBA finds the solution to the root node,T1, which is z∗T1 = 115
6 and

x∗T1 =
(
5
2 ,

5
3

)
with β1 =

⌊
5
2

⌋
= 2 and β2 =

⌊
5
3

⌋
= 1. The resulting polyhedra branching

occurs with the creation of eight child nodes from T1:

T2 = TLLe
1 , which is T1 with the constraints x1 = 2 and x2 = 1;

T3 = TGLe
1 , which is T1 with the constraints x1 = 3 and x2 = 1;

T4 = TLGe
1 , which is T1 with the constraints x1 = 2 and x2 = 2;

T5 = TGGe
1 , which is T1 with the constraints x1 = 3 and x2 = 2;

T6 = TLLi
1 , which is T1 with the constraints x1 ≤ 2, x2 ≤ 1 and x1 + x2 ≤ 2;

T7 = TGLi
1 , which is T1 with the constraints x1 ≥ 3, x2 ≤ 1, and −x1 + x2 ≤ −3;

T8 = TLGi
1 , which is T1 with the constraints x1 ≤ 2, x2 ≥ 2, and x1 − x2 ≤ −1;

T9 = TGGi
1 , which is T1 with the constraints x1 ≥ 3, x2 ≥ 2 and −x1 − x2 ≤ −6.

The partitioning scheme for T1 is presented in Figure 2. The figure depicts all eight
P abk
p structures intersected with Pp. This results in three infeasible spaces. For clarity, the

three infeasible spaces are dashed in the figure. Even though these spaces are labeled, they
do not contain any feasible solutions.

Figure 2: OBA’s branching structure for Example 1

Since depth first left search is used, the first node evaluated is T2. Evaluating this
node yields z∗T2 = 14 and x∗T2 = (2, 1). Because z∗T2 = 14 > −∞ and x∗T2 ∈ Z2

+, T2 is
fathomed, zbest is set to z∗T2 = 14, and xbest is set to x∗T2 = (2, 1). Evaluating T3 results

Octanary Polyhedral Branch and Bound for Integer Programs 11

in z∗T3 = 19 and x∗T3 = (3, 1). Since z∗T3 > zbest and x∗T3 ∈ Z2
+, T3 is fathomed, zbest

is set to 19, and xbest becomes (3, 1).
Nodes T4 and T5 are infeasible. Solving T6 results in z∗T6 = 10 and x∗T6 = (2, 0), and

this node is fathomed. Node T7 has z∗T7 = 132
7 ≤ 19, and T7 is fathomed. The solution to

T8 yields z∗T8 = 113
8 ≤ 19, and T8 is also fathomed. Finally, node T9 is fathomed because

it is infeasible. Since all nodes have been fathomed, OBA terminates and reports an optimal
solution z∗ = 19 and x∗ = (3, 1). The full enumeration tree for this problem is presented
in Figure 3.

The following two lemmas help show that OBA solves a bounded IP in finite time. The
first lemma proves that the branching polyhedra of the children generated by OBA have
integer extreme points.

Lemma 1: For any βi and βj ∈ Z+, the extreme points of PLR
LLe

, PLR
GLe

, PLR
LGe

, PLR
GGe

,
PLR
LLi

, PLR
GLi

, PLR
LGi

, and PLR
GGi

are integer if i 6= j.

Proof: For any βi and βj ∈ Z+, consider OBA’s eight branching polyhedra PLR
LLe

, PLR
GLe

,
PLR
LGe

, PLR
GGe

, PLR
LLi

, PLR
GLi

, PLR
LGi

, and PLR
GGi

. Exactly two equations create PLR
abe

and three
equations create PLR

abi
where a and b specify less than or equal to or greater than or equal

to constraints. The structure of all eight embedded matrices, when changed to equality
constraints, take the form: [

1 0
0 1

]
and

1 0 1 0 00 1 0 1 0
1 1 0 0 1


for PLR

abe
and PLR

abi
, respectively. This structure changes based upon a and b, and the change

is limited to multiplying some rows and/or columns by −1. These embedded matrices are
clearly totally unimodular (TUM). Because multiplying a column or row of a TUM matrix
by −1 preserves the TUM property, all PLR

abe
and PLR

abi
are TUM matrices. Since βi and

βj ∈ Z+ and all matrices are TUM, then every extreme point is integer. �

The next lemma proves that every feasible integer solution in Tp is contained in exactly
one of its children’s nodes. This is accomplished by splitting the feasible region into four
quadrants.

Lemma 2: If Tp is any node in OBA’s branching tree, then Zn ∩ Pp = Zn ∩ (PLLe
p ∪

PGLe
p ∪ PLGe

p ∪ PGGe
p ∪ PLLi

p ∪ PGLi
p ∪ PLGi

p ∪ PGGi
p).

Proof: Let Tp be any node in OBA’s branching tree. Because each of the eight branching
polyhedra is a subset of Pp, Zn ∩ (PLLe

p ∪ PGLe
p ∪ PLGe

p ∪ PGGe
p ∪ PLLi

p ∪ PGLi
p ∪

PLGi
p ∪ PGGi

p) ⊆ Zn ∩ Pp.
To show the opposite direction and for contradiction, assume there exists an

x′ ∈ Zn ∈ Pp such that x′ /∈ (PLLe
p ∪ PGLe

p ∪ PLGe
p ∪ PGGe

p ∪ PLLi
p ∪ PGLi

p ∪ PLGi
p ∪

PGGi
p) where βi = bx

∗Tp

i c and βj = bx
∗Tp

j c.

12 J.P. Bailey, T. Easton, and F. Vitor

Fi
gu

re
3:

O
B

A
’s

en
um

er
at

io
n

tr
ee

fo
rE

xa
m

pl
e

1

Octanary Polyhedral Branch and Bound for Integer Programs 13

Clearly, x′i ≤ βi or x′i ≥ βi + 1, and x′j ≤ βj or x′j ≥ βj + 1. Due to symmetry, it is
sufficient to only consider the case x′i ≤ βi and x′j ≤ βj . If x′i = βi and x′j = βj , then x′

satisfies PLLe
p , a contradiction to x′ /∈ PLLe

p . Thus, x′i + x′j ≤ βi + βj − 1. However, this
solution satisfies all three constraints of PLLi

p , which is also contradiction. Thus, every
feasible integer solution in Tp is in one of its eight children. �

The following theorem shows that OBA correctly solves any bounded IP and terminates
in finite time. The proof utilizes strong induction.

Theorem 1: OBA correctly solves any bounded IP within a finite number of steps.

Proof: Consider the following bounded IP with n = 1 as the base case:

maximize z = c1x1
subject to Ax1 ≤ b

x1 ≤ u1
x1 ∈Z+.

Since the above IP has only one variable, this problem can be reduced to:

maximize z = c1x1
subject to l′1 ≤ x1 ≤ u′1

x1 ∈ Z+.

The solution to this IP is trivial and is one of three cases: (1) infeasible if bu′1c < l′1;
(2) x1 = bu′1c if c1 ≥ 0; (3) x1 = dl′1e if c1 < 0. Observe that case (3) can be transformed
into case (2) by substituting x′1 = −x1. Consequently, assume c1 ≥ 0.

Consider case (1) where bu′1c < l′1. Ifu′1 < l′1, then solving OBA’sT1 node is infeasible.
If not, then the solution to OBA’s T1 node is z = c1u

′
1 and x1 = u′1 /∈ Z+. Since the IP

has only one variable, OBA branches on x1 twice. Thus, OBA creates the following eight
children:

TLLe
1 = T2, which is maximize z = c1x1 subject to l′1 ≤ x1 ≤ u′1, x1 = bu′1c,

x1 = bu′1c, x1 ≥ 0;

TLGe
1 = T3, which is maximize z = c1x1 subject to l′1 ≤ x1 ≤ u′1, x1 = bu′1c,

x1 = bu′1c+ 1, x1 ≥ 0;

TGLe
1 = T4, which is maximize z = c1x1 subject to l′1 ≤ x1 ≤ u′1, x1 = bu′1c+ 1,

x1 = bu′1c, x1 ≥ 0;

TGGe
1 = T5, which is maximize z = c1x1 subject to l′1 ≤ x1 ≤ u′1, x1 = bu′1c+ 1,

x1 = bu′1c+ 1, x1 ≥ 0;

TLLi
1 = T6, which is maximize z = c1x1 subject to l′1 ≤ x1 ≤ u′1, x1 ≤ bu′1c,

x1 ≤ bu′1c, 2x1 ≤ 2bu′1c − 1, x1 ≥ 0;

TLGi
1 = T7, which is maximize z = c1x1 subject to l′1 ≤ x1 ≤ u′1, x1 ≤ bu′1c,

x1 ≥ bu′1c+ 1, 0 ≤ −2, x1 ≥ 0;

TGLi
1 = T8, which is maximize z = c1x1 subject to l′1 ≤ x1 ≤ u′1, x1 ≥ bu′1c+ 1,

x1 ≤ bu′1c, 0 ≤ −2, x1 ≥ 0;

TGGi
1 = T9, which is maximize z = c1x1 subject to l′1 ≤ x1 ≤ u′1, x1 ≥ bu′1c+ 1,

x2 ≤ bu′1c+ 1,−2x1 ≤ −2bu′1c − 3, x1 ≥ 0.

14 J.P. Bailey, T. Easton, and F. Vitor

Since l′1 ≥ bu′1c, T2, T3, T4, T6, T7 and T8 are infeasible. Because bu′1c+ 1 > u′1, T5
and T9 are infeasible. Thus, OBA correctly identifies that the IP is infeasible for this case.

If bu′1c ≥ l′1, then T1’s solution is z∗T1 = c1u
′
1 and x∗T1

1 = u′1. If u′1 ∈ Z+, then OBA
terminates and correctly identifies an optimal solution. If not, OBA branches on x1 twice
creating eight children that are identical to the children from the previous case.

Because l′1 ≤ bu′1c, the solution to T2 is z∗T2 = c1bu′1c and x∗T2
1 = bu′1c. Clearly, T2’s

solution is integer, this node is fathomed, and zbest and xbest are updated. Since bu′1c+ 1 >
u′1, T3, T4, T5, T7, T8, and T9 are infeasible. Solving T6 results in either T6 being infeasible
or an optimal solution z∗T6 = c1(bu′1c − 1

2) < zbest and x∗T6
1 = bu′1c − 1

2 . In either case,
T6 is fathomed, OBA terminates, and correctly reports the optimal solution.

In the special case where c1 = 0, solving T1 may result in an infinite number of values
for x∗T1

1 . If the solution to T1 is integer, then T1 is fathomed and OBA terminates. If not
and the IP has an integer solution, then the solution to T2, T5, or both are integer, which
also correctly terminates OBA. If T2 and T5 are both infeasible, then no integer solution
exists and all the branched nodes are infeasible and fathomed. Thus, in every case, OBA
correctly solves all bounded IPs with n = 1, which concludes the base case.

By strong induction, assume OBA correctly solves a bounded IP with n− 1 or fewer
variables where n ≥ 2. Now consider a bounded IP of the form maximize z = cTx subject
toAx ≤ b, 0 ≤ x ≤ u, x ∈ Zn

+. OBA solves T1 and if its linear relaxation solution is either
integer or infeasible, then OBA terminates and correctly reports the optimal solution or
that the IP is infeasible. If not, OBA selects an i and j ∈ {1, ..., n} with i 6= j such that
x∗T1
i /∈ Z+, and OBA creates the following eight children:

TLLe
1 = T2, which is maximize z = cTx subject to Ax ≤ b, xi = bx∗T1

i c,
xj = bx∗T1

j c, 0 ≤ x ≤ u;
TLGe
1 = T3, which is maximize z = cTx subject to Ax ≤ b, xi = bx∗T1

i c,
xj = bx∗T1

j c+ 1, 0 ≤ x ≤ u;
TGLe
1 = T4, which is maximize z = cTx subject to Ax ≤ b, xi = bx∗T1

i c+ 1,

xj = bx∗T1
j c, 0 ≤ x ≤ u;

TGGe
1 = T5, which is maximize z = cTx subject to Ax ≤ b, xi = bx∗T1

i c+ 1,

xj = bx∗T1
j c+ 1, 0 ≤ x ≤ u;

TLLi
1 = T6, which is maximize z = cTx subject to Ax ≤ b, xi ≤ bx∗T1

i c,
xj ≤ bx∗T1

j c, xi + xj ≤ bx∗T1
i c+ bx

∗T1
j c − 1, 0 ≤ x ≤ u;

TLGi
1 = T7, which is maximize z = cTx subject to Ax ≤ b, xi ≤ bx∗T1

i c,
xj ≥ bx∗T1

j c+ 1, xi − xj ≤ bx∗T1
i c − bx

∗T1
j c − 2, 0 ≤ x ≤ u;

TGLi
1 = T8, which is maximize z = cTx subject to Ax ≤ b, xi ≥ bx∗T1

i c+ 1,

xj ≤ bx∗T1
j c,−xi + xj ≤ −bx∗T1

i c+ bx
∗T1
j c − 2, 0 ≤ x ≤ u;

TGGi
1 = T9, which is maximize z = cTx subject to Ax ≤ b, xi ≥ bx∗T1

i c+ 1,

xj ≥ bx∗T1
j c+ 1,−xi − xj ≤ −bx∗T1

i c − bx
∗T1
j c − 3, 0 ≤ x ≤ u.

Nodes T2, T3, T4, and T5 force xi to a fixed integer value. Through substitution, each
of these nodes become linear relaxation problems with n− 1 or fewer variables.

Nodes T6, T7, T8, and T9 change either the upper or lower bound of both xi and xj . If
either of these changes force xi or xj to a fixed integer value, then that particular variable
can be removed from the IP through substitution. Thus, the node’s linear relaxation problem
has n− 1 or fewer variables. After branching on xi a total of ui + 1 times, the upper and

Octanary Polyhedral Branch and Bound for Integer Programs 15

lower bound of xi are identical or the node is infeasible. By the pigeon hole principle,
some variable is forced to a particular value. When this occurs, the node becomes a linear
relaxation problem with at most n− 1 variables.

Every node in OBA’s tree eventually becomes the linear relaxation problem of an IP
with n− 1 or fewer variables. Applying OBA to each of these nodes correctly solves the
respective IP, by the induction assumption. OBA combines each of these results in the larger
tree structure and reports the correct solution or that the problem is infeasible. �

Since OBA solves any bounded IP in finite time, the question remains whether or not
OBA is more effective than traditional BB. In some situations OBA should be less efficient
than traditional BB. For instance, if an IP has only binary decision variables, then four of
OBA’s children are redundant in the branching tree. Another issue occurs when a parent’s
linear relaxation problem is almost infeasible or has a solution near zbest. In such a scenario,
any type of branching should create children that are immediately fathomed. Since OBA
generates eight children per parent and BB creates only two children, OBA may spend four
times more effort on infeasible or pointless nodes.

The primary theoretical benefit of OBA is an immediate reduction in dimension by
branching. In standard branching, the dimension of the feasible linear relaxation space of
each child is frequently identical to the dimension of the feasible linear relaxation space
of its parent. In contrast, the dimension of the feasible linear relaxation space of each of
OBA’s equality children (four of the eight children) is strictly less than the dimension of
its parent’s feasible linear relaxation space. This dimension reduction is formally shown in
Theorem 2.

Theorem 2: Given a bounded IP, if OBA creates children at Tp, then the dimension of the
feasible linear relaxation space of TLLe

p , TGLe
p , TLGe

p , and TGGe
p is strictly less than the

dimension of Tp’s feasible linear relaxation space.

Proof: Given a bounded IP, consider an iteration of OBA. Assume nodeTp is branched upon
creating TLLe

p , TGLe
p , TLGe

p , and TGGe
p . Since Tp is branched, there exists an x∗Tp

i /∈ Z+.
Thus, PLLe

p , PGLe
p , PLGe

p , and PGGe
p all require either xi = bx

∗Tp

i c or xi = bx
∗Tp

i c+ 1.
The four children are symmetric, so it is sufficient to only consider PLLe

p .

Assume PLLe
p 6= ∅. Consider the vector v = x∗T

LLe
p − x∗Tp . Clearly, every feasible

solution of TLLe
p ’s linear relaxation problem satisfies xi = bx

∗Tp

i c. Thus, the vector v is
not a feasible vector in PLLe

p . However, the vector v is contained in Tp’s feasible linear
relaxation space. Therefore, dim(PLLe

p)≤ dim(Pp)−1.
If PLLe

p = ∅, then dim(PLLe
p)= −1. Since there exists a feasible solution to Tp,

dim(Pp)≥ 0, and the result follows. �

Since OBA reduces the dimension of the linear relaxation space, one would expect OBA
to identify infeasible nodes or quality integer solutions earlier in the branching tree than
BB. The next section describes a computational study that validates this claim.

4 Computational Study

The computational study was performed on an Intel® CoreTM i7-6700 3.4GHz processor
with32GB of RAM. The goal is to test and compare the quality of OBA’s branching structure

16 J.P. Bailey, T. Easton, and F. Vitor

to CPLEX’s, a mathematical programming solver (IBM ILOG CPLEX Optimization Studio,
2016), branching algorithm under the same computational conditions. In this study, OBA
was implemented in C++ using Microsoft Visual Studio with CPLEX 12.7.

4.1 Implementation and Instances

Because CPLEX has been developed and improved over decades, OBA cannot match the
efficiency of the data retrieval and storage. As a result, only the number of nodes evaluated
is considered in this computational study. This is reasonable as both OBA’s and CPLEX’s
branching steps trivially take O(n) time and constant space, and O(d) to load constraints
where d is the depth of the node being evaluated.

Computational experiments evaluated OBA for the first 500, 000 nodes. When
comparing to CPLEX’s branching algorithm, three results were analyzed. The first result
compares the quality of the first integer solution found by both OBA and CPLEX. That is,
does OBA find an integer solution with fewer nodes and a better objective function value
than CPLEX? The second result determines the number of nodes required by CPLEX to
match or surpass the objective function value of the first integer solution found by OBA.
Given the best integer solution obtained by OBA in its first 500, 000 nodes, the third result
obtains the number of nodes required by CPLEX to match or surpass the quality of this
particular solution.

To guarantee both OBA and CPLEX run under the same computational conditions, many
parameters were modified in CPLEX. The traditional branch and cut searching strategy was
selected for CPLEX and all cuts were disabled (clique cuts, cover cuts, disjunctive cuts,
flow cover cuts, flow path cuts, Gomory fractional cuts, generalized upper bound cover
cuts, implied bound cuts, lift-and-project cuts, multi-commodity flow cuts, mixed integer
rounding cuts, and zero-half cuts). In addition, heuristics were not applied. Observe that
this approximates CPLEX’s branch and cut algorithm to traditional BB.

Presolve during preprocessing and node presolve were also disabled along with row and
column reductions, coefficient reductions, dependent row reductions, symmetry breaking
reductions, and problem matrix scaling. For both OBA and CPLEX, depth first left was
determined as the node search strategy and branching direction. In addition, CPLEX’s
traditional dive strategy was selected, statistics about the mixed integer program (MIP)
kappa were not collected, no priority order was given for the MIP optimization, and no
probing was performed on variables.

Other important parameters were left at default such as the MIP emphasis (balance
optimality and feasibility), parallel optimization mode (CPLEX decides whether to invoke
deterministic or opportunistic search), and branching variable selection (CPLEX chooses
the variable to branch). Computational experiments within CPLEX also stored node files in
the hard drive instead of RAM to avoid running out of memory. Parameters not mentioned
in this paper were either left at default settings or did not impact CPLEX’s branch and cut
algorithm.

This computational study solved 270 benchmark multiple knapsack instances from
the OR-Library Beasley (1990). Problems sets are named as mknapcb1, mknapcb2, ...,
mknapcb9 and each set has 30 instances with 100, 250, and 500 variables, 5, 10, and 30
constraints. These instances were created by Chu and Beasley Chu and Beasley (1998)
and take the form of maximize z =

∑n
l=1 clxl, subject to

∑n
l=1 ak,lxl ≤ bk for all k ∈

{1, ...,m} and xl ∈ {0, 1} for all l ∈ {1, ..., n}. From the aforementioned comment, these

Octanary Polyhedral Branch and Bound for Integer Programs 17

instances were changed to general integer decision variables. That is, xl ∈ Z+ for all l ∈
{1, ..., n}.

These problems have ak,l ∈ Z+, randomly generated, and uniformly distributed
between 0 and 1, 000. Each right-hand side value bk was calculated as

⌊
δ
∑n

l=1 ak,l
⌋

where
δ is the tightness ratio. Furthermore, each cost coefficient cl was generated as

∑m
k=1 ak,l +

b500γlc where γl is a uniform random number between 0 and 1. For each problem set, 10
instances exist with δ = 0.25, 10 with δ = 0.50, and 10 with δ = 0.75.

4.2 Results and Analysis

Results for problems sets mknapcb1, mknapcb2, mknapcb3, and mknapcb4 are not presented
because these instances are small and solved to optimality, on average, in less than 10
seconds. Problems sets mknapcb5, mknapcb6, and mknapcb7 are considered medium sized
problems and are jointly compared. Problems sets mknapcb8 and mknapcb9 are considered
large complex problems and are also jointly compared.

Tables 3-7 (Appendix) present the results obtained for instances in problems sets
mknapcb5, mknapcb6, mknapcb7, mknapcb8, and mknapcb9, respectively. Let # denote
the particular data set instance. Columns 1st Integer presents the z value, node number,
and optimality gap ∆ =

(
z∗

z

)
− 1 of the first integer solution obtained by both OBA and

CPLEX. Column Best Integer describes the z value and node number of the best integer
solution found by OBA within the first half a million nodes. Columns Match OBA’s 1st
Integer and Match OBA’s Best Integer show the number of nodes evaluated by CPLEX
to obtain a z value that is at least as good as the z value of OBA’s first and best integer
solutions, respectively.

The optimal objective function value z∗ was obtained by solving each instance with
CPLEX at default settings. Instances where z∗ is denoted with a † corresponds to the best z
value obtained with a time limit of 10 hours. All remaining instances are optimally solved.

When analyzing the results of instances in problem set mknapcb5 (Table 3), OBA found
the first integer solution, on average, after 212 nodes with an optimality gap of 1.2%. On
the other hand, CPLEX found its first integer solution after 2, 189 nodes with an optimality
gap of 3.9%. Not only did OBA found a better solution faster than CPLEX, but it also
required CPLEX over a 160 thousand nodes to achieve OBA’s first integer solution. After
half a million nodes, OBA’s best integer solution was found, on average, within 333, 358
nodes while CPLEX required on average more than 1.3 million nodes to match OBA’s best
found integer solution, which is approximately 1 million more nodes than OBA.

The reader can easily make the same analysis for problems sets mknapcb6 and mknapcb7
in Tables 4 and 5. Table 1 summarizes the results from Tables 3-5. Observe that the results
in Table 1 correspond to the average from all 30 instances from Tables 3-5. In this case,
OBA found the first integer solution, on average, with 90% fewer nodes and such a solution
is 56% closer to the optimal solution than CPLEX. Moreover, CPLEX’s branch and cut
algorithm required more than 200 thousand nodes to achieve the same (or better) first integer
solution, and more than 3.4 million nodes to match the best integer solution from OBA on
these medium sized instances.

For mknapcb8 (Table 6), OBA found the first integer solution, on average, after 179
nodes with an optimality gap of 2.2% while CPLEX found its first integer solution after
2, 392 nodes with an optimality gap of 7.0%. In addition, CPLEX matched OBA’s first and
best integer solutions after more than 5 million and half a billion nodes, respectively.

18 J.P. Bailey, T. Easton, and F. Vitor

Table 1 Summary of results from problems set mknapcb5, mknapcb6, and mknapcb7

Instance
OBA up to 500,000 Nodes CPLEX

1st Integer Best Integer 1st Integer Match OBA’s
1st Integer

Match OBA’s
Best Integer

Node ∆ Node Node ∆ Node Node
mknapcb5 212 1.2% 333,358 2,189 3.9% 163,613 1,313,906
mknapcb6 454 0.7% 303,789 4,480 3.0% 470,510 4,963,618
mknapcb7 74 5.4% 290,005 859 9.5% 22,635 5,006,540
Average 247 2.4% 309,051 2,510 5.5% 218,919 3,761,355

The most complex instances in this computational study are from mknapcb9 (Table 7).
OBA’s first integer solution was found after 327 nodes with an optimality gap of 1.3%,
and CPLEX’s first integer solution was found after 4, 763 nodes with an optimality gap
of 5.5%, on average. In this case, CPLEX had to evaluate more than 300 million and 1.3
billion nodes to achieve OBA’s first and best integer solutions, on average.

Overall, problems sets mknapcb8 and mknapcb9 evaluated on average 93% fewer nodes
to obtain a first integer solution that is 73% closer to the optimal solution than CPLEX (Table
2). Furthermore, CPLEX had to search over 180 million nodes and 980 million nodes to
achieve an integer solution that is at least as good as OBA’s first and best integer solutions,
respectively. Results from these large complex instances show some of OBA’s potential to
identify quality integer solutions in nonbinary IPs.

Table 2 Summary of results from problems set mknapcb8 and mknapcb9

Instance
OBA up to 500,000 Nodes CPLEX

1st Integer Best Integer 1st Integer Match OBA’s
1st Integer

Match OBA’s
Best Integer

Node ∆ Node Node ∆ Node Node
mknapcb8 179 2.2% 338,610 2,392 7.0% 5,167,623 586,002,366
mknapcb9 327 1.3% 280,626 4,763 5.5% 357,681,991 1,376,964,911
Average 253 1.7% 309,618 3,578 6.3% 181,424,807 981,483,638

Based on the computational results presented, one may imply that OBA finds quality
integer solutions more quickly than CPLEX’s branch and cut algorithm (or simply an
approximation of BB). That is, CPLEX had to search over 3 million more nodes than OBA
to achieve the same (or better) solution when solving medium sized instances from the
OR-Library. This comparison is more pronounced when analyzing large complex instances
from the OR-Library, since CPLEX had to search almost 1 billion more nodes to match
OBA’s best integer solution. Consequently, this paper suggests using OBA early in the
branching tree and transitioning to standard branching. Alternately, one could implement
OBA’s equality nodes for concepts such as warm start solution or random diving.

5 Conclusion and Future Research

This paper introduced a polyhedral branching technique, referred to as the octanary
branching algorithm (OBA). Traditional branch and bound (BB) generates two child nodes

Octanary Polyhedral Branch and Bound for Integer Programs 19

for every unfathomed parent node, while OBA creates eight children. Theoretically, OBA
solves any bounded integer program. Furthermore, OBA forces the dimension of the feasible
linear relaxation space of four of the eight children to be strictly less than the dimension of
its parent’s feasible linear relaxation space. This dimension reduction should enable OBA
to identify integer solutions earlier in its branching tree.

Computational experiments evaluated the initial tree of OBA and CPLEX’s branching
algorithm (an approximation of BB). In both medium sized and large complex instances
from the OR-Library, OBA found better integer solutions earlier in the branching tree. In
the most complex instances, CPLEX searched over 1 billion more nodes than OBA to find
the same quality integer solution. Thus, OBA should be used in place of BB for the first
portion of the branching tree, be implemented as a warm start solution, or be applied as a
diving strategy.

The work presented in this paper also generates a variety of new research questions.
Since OBA finds quality integer solutions faster than BB, would OBA be significantly more
effective at a random diving process? What other branching polyhedra can be more effective
at solving integer programs. For instance, the four children from OBA that create equality
constraints represent an “inner layer” of the feasible region close to the parent’s linear
relaxation solution, while the four children with inequality constraints represent the “outer
layer.” Any additional layers would be further from the parent’s linear relaxation solution
and would likely have significantly worse objective function values. Would a branching
scheme that creates more than two layers perform better than OBA?

Acknowledgment

This research was funded in part by the Kansas Technology Enterprise Corporation,
MOE Academic Research Fund under Grant No. 2016-T2-1-170, and National Research
Foundation under Grant No. NRF-NRFF2018-0.

References

Abraham, J.N. and Rao, K.S. (2008) ‘Production planning through flow network
optimisation and mixed integer linear programming models in a petroleum refinery’,
International Journal of Operational Research, Vol. 3, No. 3, pp.315–335

Achterberg, T., Koch, T. and Martin, A. (2005) ‘Branching rules revisited’, Operations
Research Letters, Vol. 33, No. 1, pp.42–54

Albashabsheh, N.T. and Heier Stamm, J.L. (2019) ‘Optimization of lignocellulosic biomass-
to-biofuel supply chains with mobile pelleting’, Transportation Research Part E: Logistics
and Transportation Review, Vol. 122, No. 1, pp.545–562

Antunes, C.H., Martins, A.G. and Brito, I.S. (2004) ‘A multiple objective mixed integer
linear programming model for power generation expansion planning’, Energy, Vol. 29,
No. 4, pp.613–627

Bailey, J.P. (2012) Octanary Branching Algorithm. Mater’s thesis, Kansas State University,
Manhattan KS, USA

20 J.P. Bailey, T. Easton, and F. Vitor

Bailey, J, Iwen, M.A. and Spencer, C.V. (2012) ‘On the design of deterministic matrices for
fast recovery of Fourier compressible functions’, SIAM Journal on Matrix Analysis and
Applications, Vol. 33, No. 1, pp.263–289

Balas, E. and Zemel, E. (1978) ‘Facets of the knapsack polytope from minimal covers’,
SIAM Journal on Applied Mathematics, Vol. 34, No. 1, pp.119–148

Beasley, J.E. (1990) ‘OR-library: distributing test problems by electronic mail’, The Journal
of the Operational Research Society, Vol. 41, No. 11, pp.1069–1072

Ben-Arieh, D., Easton, T. and Choubey, A.M. (2009) ‘Solving the multiple platforms
configuration problem’, International Journal of Production Research, Vol. 47, No. 7,
pp.1969–1988

Benders, J.F. (1962) ‘Partitioning procedures for solving mixed-variables programming
problems’, Numerische Mathematik, Vol. 4, No. 1, pp.238–252

Carrion, M. and Arroyo, J.M. (2006) ‘A computationally efficient mixed-integer linear
formulation for the thermal unit commitment problem’, IEEE Transactions on Power
Systems, Vol. 21, No. 3, pp.1371–1378

Chu, P.C. and Beasley, J.E. (1998) ‘A genetic algorithm for the multidimensional knapsack
problem’, Journal of Heuristics, Vol. 4, No. 1, pp.63–86

Chvátal, V. (1973) ‘Edmonds polytopes and a hierarchy of combinatorial problems’,
Discrete Mathematics, Vol. 4, No. 4, pp.305–337

Conejo, A.J., Castillo, E., Mínguez, R. and García-Bertrand, R. (2006) Decomposition
Techniques in Mathematical Programming, Springer-Verlag, Berlin Heidelberg, Germany

Conforti, M., Cornuejols, G. and Zambelli, G. (2014) Integer Programming, Springer,
Switzerland

Dantzig, G.B. and Wolfe, P. (1960) ‘Decomposition principle for linear programs’,
Operations Research, Vol. 8, No. 1, pp.101–111

Dantzig, G.B. and Wolfe, P. (1961) ‘The decomposition algorithm for linear programs’,
Econometrica, Vol. 29, No. 4, pp.767–778

Delli, U. and Sinha, A.K. (2019) ‘Parallel computation framework for optimizing trailer
routes in bulk transportation’, Journal of Industrial Engineering International, pp.1–11
[online] https://link.springer.com/article/10.1007/s40092-019-0308-8 (Accessed 17 June
2019)

Duong, V.H. and Bui, N.H. (2018) ‘A mixed-integer linear formulation for a capacitated
facility location problem in supply chain network design’, International Journal of
Operational Research, Vol. 33, No. 1, pp.32–54

Easton, T. and Lee, J. (2012) ‘Quaternary hyperplane branching with internally generated
cutting planes for solving integer programmes’, International Journal of Operational
Research, Vol. 14, No. 3, pp.366–385

Easton, T., Hooker, K. and Lee, E.K. (2003) ‘Facets of the independent set polytope’,
Mathematical Programming, Vol. 98, No. 1-3, pp.177–199

Octanary Polyhedral Branch and Bound for Integer Programs 21

Ergünes, B., Özdamar, L., Demir, O. and Gülcan, N. (2017) ‘A partitioning algorithm for
the mixed integer nonlinear programming problem’, International Journal of Operational
Research, Vol. 28, No. 2, pp.201–215

Ford, L.R. and Fulkerson, D.R. (1958) ‘A suggested computation for maximal multi-
commodity network flows’, Management Science, Vol. 5, No. 1, pp.97–101

Gifford, T., Opicka, T., Sinha, A., Brink, D.V., Gifford, A. and Randall, R. (2018)
‘Dispatch optimization in bulk tanker transport operations’, INFORMS Journal on Applied
Analytics, Vol. 48, No. 5, pp.403–421

Gilmore, P.C. and Gomory, R.E. (1961) ‘A linear programming approach to the cutting-stock
problem’, Operations Research, Vol. 9, No. 6, pp.849–859

Gilmore, P.C. and Gomory, R.E. (1963) ‘A linear programming approach to the cutting-stock
problem-part ii’, Operations Research, Vol. 11, No. 6, pp.863–888

Gomory, R.E. (1969) ‘Some polyhedra related to combinatorial problems’, Linear Algebra
and its Applications, Vol. 2, No. 4, pp.451–558

Hamilton, W.F. and Moses, M.A. (1973) ‘An optimization model for corporate financial
planning’, Operations Research, Vol. 21, No. 3, pp.677–692

Heier Stamm, J.L., Serban, N., Swann, J. and Wortley, P. (2017) ‘Quantifying and explaining
accessibility with application to the 2009 H1N1 vaccination campaign’, Health Care
Management Science, Vol. 20, No. 1, pp.76–93

Hickman, R. and Easton, T. (2015) ‘Merging valid inequalities over the multiple knapsack
polyhedron’, International Journal of Operational Research, Vol. 24, No. 2, pp.214–227

Hickman, R. and Easton, T. (2015) ‘On merging cover inequalities for multiple knapsack
problems’, Open Journal of Optimization, Vol. 4, No. 4, pp.141–155

IBM ILOG CPLEX Optimization Studio (2016) Version 12.7 [online] http://www-
01.ibm.com/software/info/ilog/ (Accessed 17 June 2019)

IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual (2016) Version 12.7
[online] https://www.ibm.com/support/knowledgecenter/SSSA5P_12.7.0/ilog.odms.
studio.help/pdf/usrcplex.pdf (Accessed 17 June 2019)

Jörnsten, K.O. and Värbrand, P. (1991) ‘A hybrid algorithm for the generalized assignment
problem’, Optimization, Vol. 22, No. 2, pp.273–282

Karp, R.M. (1972) ‘Reducibility among Combinatorial Problems’, in Miller, R.E. et al.
(Eds), Complexity of Computer Computations, Plenum, New York NY, USA, pp.85–103

Kashkoush, M.N., Shalaby, M.A. and Abdelhafiez, E.A. (2012) ‘A mixed-integer model for
two-dimensional polyominoes strip packing and tiling problems’, International Journal
of Operational Research, Vol. 15, No. 4, pp.391–405

Kose, E. and Karabay, S. (2016) ‘Mathematical programming model proposal to solve a
real-life public sector facility location problem’, International Journal of Operational
Research, Vol. 26, No. 1, pp.1–12

22 J.P. Bailey, T. Easton, and F. Vitor

Krokhmal, P., Uryasev, S. and Zrazhevsky, G. (2002) ‘Risk management for hedge fund
portfolios: a comparative analysis of linear rebalancing strategies’, The Journal of
Alternative Investments, Vol. 5, No. 1, pp.10–29

Land, A.H. and Doig, A.G. (1960) ‘An automatic method of solving discrete programming
problems’, Econometrica, Vol. 28, No. 3, pp.497–520

Lee, E.K., Fox, T. and Crocker, I. (2003) ‘Integer programming applied to intensity-
modulated radiation therapy treatment planning’, Annals of Operations Research, Vol.
119, No. 1-4, pp.165–181

Limpianchob, C. (2017) ‘Integrated of harvesting and production planning in aromatic
coconut supply chain using mixed-integer linear programming’, International Journal of
Operational Research, Vol. 30, No. 3, pp.360–374

Linderoth, J.T. and Savelsbergh, M.W.P. (1999) ‘A computational study of search strategies
for mixed integer programming’, INFORMS Journal on Computing, Vol. 11, No. 2,
pp.173–187

Lübbecke, M.E. and Desrosiers, J. (2005) ‘Selected topics in column generation’,
Operations Research, Vol. 53, No. 6, pp.1007–1023

Lustig, M., Donoho, D. and Pauly, J.M. (2007) ‘Sparse MRI: the application of compressed
sensing for rapid MR imaging’, Magnetic Resonance in Medicine, Vol. 58, No. 6, pp.1182–
1195

Lustig, M., Donoho, D.L., Santos, J.M. and Pauly, J.M. (2008) ‘Compressed sensing MRI:
a look at how CS can improve on current imaging techniques’, IEEE Signal Processing
Magazine, Vol. 25, No. 2, pp.72–82

Ma, J. (2009) ‘Single-pixel remote sensing’, IEEE Geoscience and Remote Sensing Letters,
Vol. 6, No. 2, pp.199–203

Ma, J. (2010) ‘Compressed sensing for surface characterization and metrology’, IEEE
Transactions on Instrumentation and Measurement, Vol. 59, No. 6, pp.1600–1615

Mehrotra, S. and Li, Z. (2011) ‘Branching on hyperplane methods for mixed integer linear
and convex programming using adjoint lattices’, Journal of Global Optimization, Vol. 49,
No. 4, pp.623–649

Morrison, D.R., Jacobson, S.H., Sauppe, J.J. and Sewell, E.C. (2016) ‘Branch-and-bound
algorithms: a survey of recent advances in searching, branching, and pruning’, Discrete
Optimization, Vol. 19, No. 1, pp.79–102

Muggy, L. and Heier Stamm, J.L. (2017) ‘Dynamic, robust models to quantify the impact
of decentralization in post-disaster health care facility location decisions’, Operations
Research for Health Care, Vol. 12, No. 1, pp.43–59

Nemhauser, G.L. (2012) ‘Column generation for linear and integer programming’,
Documenta Mathematica, Extra Volume: Optimization Stories, pp.65–73

Nemhauser, G.L and Wolsey, L.A. (1999) Integer and Combinatorial Optimization, John
Wiley and Sons, New York NY, USA

Octanary Polyhedral Branch and Bound for Integer Programs 23

Noor-E-Alam M., Todd, B. and Doucette, J. (2014) ‘Integer linear programming model for
grid-based wireless transmitter location problems’, International Journal of Operational
Research, Vol. 22, No. 1, pp.48–64

Pendharkar, P.C. and Rodger, J.A. (2006) ‘Information technology capital budgeting using
a knapsack problem’, International Transactions in Operational Research, Vol. 13, No.
4, pp.333–351

Ryan, D. and Foster, B. (1981) ‘An integer programming approach to scheduling’, in Wren,
A. (Ed), Computer Scheduling of Public Transport, North-Holland Publishing Company,
Amsterdam, Netherlands, pp.269–280

Salam, A., Bandaly, D. and Defersha, F.M. (2015) ‘Optimising the design of a supply
chain network with economies of scale using mixed integer programming’, International
Journal of Operational Research, Vol. 10, No. 4, pp.398–415

Singh, G., Sier, D., Ernst, A.T., Gavriliouk, O., Oyston, R., Giles, T. and Welgama, P. (2012)
‘A mixed integer programming model for long term capacity expansion planning: a case
study from the Hunter Valley Coal Chain’, European Journal of Operational Research,
Vol. 220, No. 1, pp.210–224

Sinha, A.K., Davich, T. and Krishnamurthy, A. (2016) ‘Optimisation of production and
subcontracting strategies’, International Journal of Production Research, Vol. 54, No. 8,
pp.2377–2393

Stahl, J.E., Kong, N., Shechter, S.M., Schaefer, A.J. and Roberts, M.S. (2005) ‘A
methodological framework for optimally reorganizing liver transplant regions’, Medical
Decision Making, Vol. 25, No. 1, pp.35–46

Subramanian, R., Scheff, R.P., Quillinan, J.D., Steve Wiper, D. and Marsten, R.E. (1994)
‘Coldstart: fleet assignment at Delta Air Lines’, INFORMS Journal on Applied Analytics,
Vol. 24, No. 1, pp.104–120

Toffolo, T.A.M., Santos, H.G., Carvalho, M.A.M. and Soares, J.A. (2016) ‘An integer
programming approach to the multimode resource-constrained multiproject scheduling
problem’, Journal of Scheduling, Vol. 19, No. 3, pp.295–307

Vitor, F.T. (2015) Improving the Solution Time of Integer Programs by Merging Knapsack
Constraints with Cover Inequalities. Mater’s thesis, Kansas State University, Manhattan
KS, USA

Vitor, F. and Easton, T. (2016) ‘Merged knapsack cover inequalities for the multiple
knapsack problem’, in Proceedings of the 2016 Industrial and Systems Engineering
Research Conference, Institute of Industrial and Systems Engineers, Anaheim CA, USA,
pp.607–612

Vitor, F. and Easton, T. (2019) ‘Approximate and exact merging of knapsack constraints
with cover inequalities’, to appear in Optimization

Vuthipadadon, S. and Olafsson, S. (2007) ‘An integer programming approach for scheduling
inbound calls in call centres’, International Journal of Operational Research, Vol. 2, No.
4, pp.414–428

24 J.P. Bailey, T. Easton, and F. Vitor

Walker, R.J. (1960) ‘An enumerative technique for a class of combinatorial problems’,
in Proceedings of Symposia in Applied Mathematics, American Mathematical Society,
Providence RI, USA, pp.91–94

Yin, J., Yang, L., Tang, T., Gao, Z. and Ran, B. (2017) ‘Dynamic passenger demand
oriented metro train scheduling with energy-efficiency and waiting time minimization:
mixed-integer linear programming approaches’, Transportation Research Part B:
Methodological, Vol. 97, No. 1, pp.182–213

Zhan, Y. and Zheng, Q.P. (2018) ‘A multistage decision-dependent stochastic bilevel
programming approach for power generation investment expansion planning’, IISE
Transactions, Vol. 50, No. 8, pp.720–734

Appendix

Octanary Polyhedral Branch and Bound for Integer Programs 25

Ta
bl

e
3

R
es

ul
ts

ob
ta

in
ed

w
ith

in
st

an
ce

s
fr

om
pr

ob
le

m
se

tm
kn

ap
cb

5
-2

50
va

ri
ab

le
s
×

10
co

ns
tr

ai
nt

s

δ
#

z
∗

O
BA

up
to

50
0,

00
0

N
od

es
C

PL
E

X

1s
tI

nt
eg

er
B

es
tI

nt
eg

er
1s

tI
nt

eg
er

M
at

ch
O

BA
’s

1s
tI

nt
eg

er
M

at
ch

O
BA

’s
B

es
tI

nt
eg

er

z
N

od
e

∆
z

N
od

e
z

N
od

e
∆

z
N

od
e

z
N

od
e

0.
25

1
73

,7
07

72
,5

92
15

3
1.

5%
73

,4
98

24
0,

86
7

67
,0

63
2,

08
9

9.
9%

72
,6

71
77

,6
28

73
,5

28
63

4,
29

5
2

68
,2

62
66

,7
09

20
2

2.
3%

67
,7

78
26

3,
15

3
61

,4
67

2,
16

6
11

.1
%

66
,7

48
31

,0
49

67
,8

79
1,

84
4,

82
2

3
65

,8
72

64
,6

92
28

7
1.

8%
65

,5
26

47
5,

66
1

62
,0

07
1,

96
8

6.
2%

65
,1

64
3,

98
0

65
,6

63
84

,3
50

4
73

,1
13

71
,2

13
14

8
2.

7%
72

,9
46

44
3,

13
3

70
,4

88
2,

11
7

3.
7%

71
,2

82
6,

07
1

72
,9

70
83

4,
87

3
5

67
,8

10
66

,3
18

14
4

2.
2%

67
,5

47
29

5,
20

2
59

,8
23

2,
21

3
13

.4
%

66
,3

89
21

,8
05

67
,5

91
66

3,
87

3
6

67
,4

04
66

,4
56

31
4

1.
4%

66
,8

84
31

0,
97

4
61

,4
90

2,
10

2
9.

6%
66

,5
95

16
,5

94
66

,8
88

72
,9

89
7

67
,2

48
66

,4
72

15
3

1.
2%

66
,9

80
68

,3
71

64
,2

97
2,

20
4

4.
6%

66
,5

32
16

,7
38

66
,9

99
1,

71
9,

41
0

8
74

,0
30

72
,8

56
32

7
1.

6%
73

,9
51

33
1,

45
9

72
,7

42
1,

97
1

1.
8%

73
,0

87
2,

34
2

74
,0

30
24

2,
53

7
9

67
,8

80
66

,1
13

18
0

2.
7%

67
,3

71
37

5,
87

9
65

,4
56

2,
00

9
3.

7%
66

,8
83

2,
51

2
67

,7
71

80
,8

82
10

72
,8

57
71

,4
77

13
9

1.
9%

72
,5

58
24

8,
00

7
70

,6
69

2,
06

5
3.

1%
71

,4
81

2,
39

9
72

,6
62

38
2,

71
8

0.
50

11
13

9,
86

5
13

8,
93

9
13

5
0.

7%
13

9,
63

0
43

6,
19

3
13

7,
36

0
2,

02
5

1.
8%

13
8,

93
9

17
,9

90
13

9,
70

6
21

0,
06

5
12

13
3,

07
0

13
1,

70
9

24
1

1.
0%

13
2,

87
4

44
3,

12
5

13
0,

00
9

2,
33

1
2.

4%
13

1,
91

1
65

,4
67

13
2,

88
7

2,
31

3,
37

3
13

14
2,

34
5

14
1,

63
2

14
4

0.
5%

14
2,

03
1

26
5,

30
9

13
9,

72
3

1,
99

8
1.

9%
14

1,
69

3
12

7,
82

1
14

2,
17

8
35

9,
88

9
14

14
9,

42
5

14
8,

56
0

21
1

0.
6%

14
9,

01
9

17
4,

11
9

14
6,

42
0

2,
00

6
2.

1%
14

8,
93

1
5,

70
1

14
9,

02
1

20
,7

34
15

13
6,

33
5

13
5,

02
1

12
6

1.
0%

13
5,

84
5

48
5,

72
6

13
5,

39
0

2,
04

1
0.

7%
13

5,
39

0
2,

04
1

13
5,

88
6

50
,6

45
16

13
5,

98
5

13
4,

60
0

16
2

1.
0%

13
5,

63
9

29
0,

76
4

13
2,

22
9

2,
05

1
2.

8%
13

4,
68

8
2,

65
8

13
5,

67
2

16
0,

95
7

17
13

7,
03

2
13

5,
86

4
40

0
0.

9%
13

6,
95

4
26

0,
57

4
13

2,
73

7
2,

17
1

3.
2%

13
5,

89
6

16
4,

13
8

13
6,

97
5

1,
05

0,
88

6
18

13
0,

96
5

12
9,

59
5

27
5

1.
1%

13
0,

38
3

37
5,

66
3

12
6,

84
6

2,
43

2
3.

2%
12

9,
89

1
19

,0
65

13
0,

43
8

89
8,

86
2

19
13

8,
21

0
13

7,
15

0
16

2
0.

8%
13

7,
86

0
34

2,
39

2
13

3,
33

9
2,

06
9

3.
7%

13
7,

28
4

6,
21

5
13

8,
18

4
62

5,
14

2
20

13
5,

41
3

13
3,

44
7

13
5

1.
5%

13
5,

05
2

30
7,

79
9

13
2,

71
6

2,
29

0
2.

0%
13

3,
46

4
2,

58
9

13
5,

09
1

20
1,

69
1

0.
75

21
20

2,
15

3
20

0,
18

5
18

9
1.

0%
20

1,
58

2
48

8,
19

6
19

1,
62

1
2,

37
5

5.
5%

20
0,

18
6

58
,1

46
20

1,
69

0
17

5,
86

8
22

19
8,

11
9

19
6,

87
0

18
0

0.
6%

19
7,

49
2

47
4,

26
7

19
4,

12
8

2,
43

0
2.

1%
19

7,
19

8
28

9,
34

5
19

7,
50

1
55

6,
58

1
23

20
2,

93
6

20
2,

01
0

14
4

0.
5%

20
2,

71
5

6,
41

4
20

1,
35

7
2,

23
6

0.
8%

20
2,

30
4

23
,0

60
20

2,
81

7
1,

32
9,

54
3

24
20

5,
24

7
20

3,
78

2
21

1
0.

7%
20

4,
86

2
46

4,
86

2
20

1,
93

0
2,

53
9

1.
6%

20
4,

47
5

3,
54

3
20

4,
86

6
78

0,
32

5
25

21
9,

81
3

21
9,

02
8

64
7

0.
4%

21
9,

77
0

38
0,

79
5

21
7,

57
4

2,
16

3
1.

0%
21

9,
27

5
67

,1
93

21
9,

81
3

36
9,

82
5

26
20

9,
09

1
20

7,
18

1
22

8
0.

9%
20

8,
68

0
36

7,
11

8
20

6,
56

7
1,

92
0

1.
2%

20
7,

90
2

2,
12

6
20

8,
68

2
97

,3
60

27
20

9,
16

3
20

7,
55

7
14

4
0.

8%
20

9,
00

2
46

8,
09

7
20

5,
56

7
2,

05
9

1.
7%

20
8,

44
5

2,
36

5
20

9,
05

2
83

,6
23

28
21

4,
84

8
21

3,
27

4
18

8
0.

7%
21

4,
75

8
46

9,
82

6
21

1,
74

2
2,

43
8

1.
5%

21
3,

60
8

35
,8

56
21

4,
84

8
1,

72
6,

62
4

29
20

4,
35

1
20

3,
30

1
12

6
0.

5%
20

4,
27

1
37

7,
09

5
19

5,
46

5
2,

39
6

4.
5%

20
3,

38
2

92
3,

15
5

20
4,

35
1

6,
64

2,
40

5
30

20
1,

08
4

20
0,

18
2

27
4

0.
5%

20
0,

74
5

69
,7

14
19

0,
18

3
2,

78
6

5.
7%

20
0,

20
6

2,
90

8,
79

7
20

0,
75

4
15

,2
02

,0
44

Av
er

ag
e

21
2

1.
2%

33
3,

35
8

2,
18

9
3.

9%
16

3,
61

3
1,

31
3,

90
6

26 J.P. Bailey, T. Easton, and F. Vitor

Ta
bl

e
4

R
es

ul
ts

ob
ta

in
ed

w
ith

in
st

an
ce

s
fr

om
pr

ob
le

m
se

tm
kn

ap
cb

6
-5

00
va

ri
ab

le
s
×

10
co

ns
tr

ai
nt

s

δ
#

z
∗

O
BA

up
to

50
0,

00
0

N
od

es
C

PL
E

X

1s
tI

nt
eg

er
B

es
tI

nt
eg

er
1s

tI
nt

eg
er

M
at

ch
O

BA
’s

1s
tI

nt
eg

er
M

at
ch

O
BA

’s
B

es
tI

nt
eg

er

z
N

od
e

∆
z

N
od

e
z

N
od

e
∆

z
N

od
e

z
N

od
e

0.
25

1
14

7,
19

7
14

5,
40

0
26

0
1.

2%
14

6,
41

8
40

4,
03

6
14

1,
41

1
4,

11
9

4.
1%

14
5,

40
1

12
,9

68
14

6,
60

3
45

,4
42

2
14

9,
90

2
14

9,
00

1
61

5
0.

6%
14

9,
39

6
16

4,
44

8
13

9,
49

4
4,

26
6

7.
5%

14
9,

01
8

1,
46

3,
76

4
14

9,
41

5
8,

64
0,

67
6

3
14

4,
13

0
14

2,
83

1
1,

27
3

0.
9%

14
3,

68
5

37
1,

39
6

13
7,

53
6

4,
54

1
4.

8%
14

3,
08

2
3,

78
8,

07
1

14
3,

70
6

18
,7

44
,8

00
4

14
3,

31
1

14
1,

85
0

32
3

1.
0%

14
2,

91
0

48
8,

93
2

14
1,

16
4

4,
11

9
1.

5%
14

1,
93

6
13

,2
09

14
2,

93
9

16
5,

53
6

5
14

0,
50

4
13

8,
78

8
25

1
1.

2%
13

9,
81

5
16

2,
27

8
13

5,
68

9
4,

21
8

3.
5%

13
8,

81
1

13
,0

15
13

9,
84

6
23

0,
24

4
6

14
5,

89
0

14
4,

39
9

62
3

1.
0%

14
5,

44
8

26
6,

64
8

13
9,

07
3

4,
42

6
4.

9%
14

4,
56

2
86

,6
85

14
5,

49
6

45
7,

51
6

7
15

3,
39

8
15

2,
05

8
28

7
0.

9%
15

2,
96

7
25

4,
17

2
14

8,
36

1
4,

11
0

3.
4%

15
2,

06
3

26
,7

11
15

3,
03

5
1,

48
6,

11
8

8
14

2,
32

9
14

0,
50

6
26

9
1.

3%
14

1,
77

4
46

9,
83

9
13

6,
91

2
4,

06
4

4.
0%

14
0,

55
3

6,
00

5
14

1,
88

2
16

4,
34

1
9

14
1,

01
7

13
8,

58
3

27
8

1.
8%

14
0,

09
9

38
4,

84
7

12
9,

73
2

4,
80

4
8.

7%
13

8,
69

4
11

6,
19

0
14

0,
14

8
78

8,
60

6
10

13
9,

18
7

13
7,

68
3

26
0

1.
1%

13
8,

68
0

44
3,

96
3

13
4,

77
8

4,
53

8
3.

3%
13

7,
73

8
35

8,
41

4
13

8,
70

6
24

,9
44

,7
59

0.
50

11
27

7,
97

5
27

6,
89

2
40

7
0.

4%
27

7,
75

2
42

8,
28

4
27

4,
29

2
4,

26
9

1.
3%

27
7,

02
4

45
,8

99
27

7,
79

5
20

,9
30

,6
32

12
28

8,
02

2
28

6,
53

3
26

9
0.

5%
28

7,
48

4
22

5,
74

9
27

4,
13

3
5,

46
5

5.
1%

28
6,

55
3

69
0,

53
5

28
7,

49
7

3,
72

4,
40

1
13

28
6,

68
6

28
5,

27
9

43
0

0.
5%

28
6,

28
8

28
7,

65
6

28
3,

22
4

4,
33

6
1.

2%
28

5,
33

7
10

,7
43

28
6,

46
3

20
9,

64
7

14
30

4,
56

3
†

30
3,

52
7

59
9

0.
3%

30
4,

40
0

24
0,

02
7

29
9,

53
5

4,
52

5
1.

7%
30

3,
77

7
12

9,
19

4
30

4,
56

3
2,

65
1,

17
3

15
28

3,
78

4
28

1,
84

4
30

5
0.

7%
28

3,
19

4
40

7,
94

6
27

1,
11

1
5,

09
5

4.
7%

28
1,

84
5

96
,1

19
28

3,
19

7
42

6,
14

8
16

28
2,

94
7

28
1,

38
1

52
0

0.
6%

28
2,

39
9

25
1,

08
6

27
5,

20
6

4,
43

3
2.

8%
28

1,
41

7
17

,1
23

28
2,

56
3

20
3,

60
9

17
29

9,
36

3
†

29
7,

51
8

46
5

0.
6%

29
8,

70
8

11
0,

24
1

29
5,

15
2

4,
19

5
1.

4%
29

7,
52

7
16

,1
84

29
8,

73
3

16
4,

13
4

18
29

0,
83

3
†

28
9,

24
9

89
9

0.
5%

29
0,

31
3

26
3,

16
9

28
7,

45
1

4,
43

5
1.

2%
28

9,
50

3
16

5,
58

7
29

0,
31

9
4,

70
7,

32
2

19
29

4,
26

7
29

2,
97

3
36

0
0.

4%
29

3,
79

2
34

8,
48

2
28

4,
76

6
4,

60
9

3.
3%

29
2,

98
9

79
8,

11
5

29
3,

83
2

5,
05

7,
98

4
20

29
1,

99
1
†

29
0,

62
1

35
9

0.
5%

29
1,

48
9

34
2,

04
5

29
0,

88
3

3,
98

7
0.

4%
29

0,
88

3
3,

98
7

29
1,

53
6

12
,0

49

0.
75

21
43

3,
58

9
43

1,
94

7
25

1
0.

4%
43

3,
15

2
47

,7
36

42
6,

26
5

4,
58

0
1.

7%
43

1,
98

8
17

3,
55

0
43

3,
21

9
3,

66
4,

41
5

22
47

4,
52

6
47

3,
21

0
52

7
0.

3%
47

4,
22

8
24

7,
04

6
46

3,
06

5
4,

23
0

2.
5%

47
3,

31
3

12
6,

84
1

47
4,

33
8

1,
16

7,
22

7
23

41
3,

94
5
†

41
2,

00
0

26
9

0.
5%

41
3,

15
2

33
3,

77
5

40
7,

63
2

4,
15

1
1.

5%
41

2,
44

0
4,

48
6

41
3,

21
4

76
,2

18
24

45
5,

08
0

45
3,

82
7

78
1

0.
3%

45
4,

62
3

13
8,

71
6

44
7,

11
2

4,
40

2
1.

8%
45

3,
96

6
98

,5
84

45
4,

65
5

1,
13

9,
11

7
25

42
2,

46
5
†

42
1,

38
6

74
7

0.
3%

42
2,

03
3

45
9,

39
5

41
8,

94
5

4,
31

4
0.

8%
42

1,
39

6
27

,5
34

42
2,

06
1

37
4,

06
5

26
42

2,
78

0
†

42
0,

86
2

31
4

0.
5%

42
2,

13
2

49
4,

95
0

39
5,

04
2

6,
25

1
7.

0%
42

0,
90

3
5,

27
5,

67
9

42
2,

26
0

7,
08

5,
05

2
27

44
4,

75
4

44
3,

43
5

62
1

0.
3%

44
4,

32
9

14
,2

57
43

9,
59

9
4,

34
4

1.
2%

44
3,

73
4

16
,2

46
44

4,
34

9
16

3,
13

8
28

42
6,

24
5
†

42
5,

05
9

32
2

0.
3%

42
5,

73
9

31
5,

00
1

41
2,

90
0

4,
54

2
3.

2%
42

5,
22

7
12

4,
49

0
42

5,
86

7
58

7,
50

1
29

41
3,

14
9
†

41
1,

57
4

35
8

0.
4%

41
2,

92
9

32
2,

29
8

40
6,

75
8

4,
92

6
1.

6%
41

1,
81

1
40

3,
58

3
41

2,
93

6
40

,5
43

,9
79

30
43

7,
29

5
†

43
5,

99
5

36
7

0.
3%

43
6,

92
2

42
5,

25
4

43
3,

15
2

4,
11

9
1.

0%
43

6,
06

7
5,

80
0

43
6,

93
3

35
2,

69
6

Av
er

ag
e

45
4

0.
7%

30
3,

78
9

4,
48

0
3.

0%
47

0,
51

0
4,

96
3,

61
8

Octanary Polyhedral Branch and Bound for Integer Programs 27

Ta
bl

e
5

R
es

ul
ts

ob
ta

in
ed

w
ith

in
st

an
ce

s
fr

om
pr

ob
le

m
se

tm
kn

ap
cb

7
-1

00
va

ri
ab

le
s
×

30
co

ns
tr

ai
nt

s

δ
#

z
∗

O
BA

up
to

50
0,

00
0

N
od

es
C

PL
E

X

1s
tI

nt
eg

er
B

es
tI

nt
eg

er
1s

tI
nt

eg
er

M
at

ch
O

BA
’s

1s
tI

nt
eg

er
M

at
ch

O
BA

’s
B

es
tI

nt
eg

er

z
N

od
e

∆
z

N
od

e
z

N
od

e
∆

z
N

od
e

z
N

od
e

0.
25

1
22

,5
63

20
,9

10
96

7.
9%

22
,0

48
28

2,
49

6
19

,5
59

80
8

15
.4

%
21

,2
79

1,
25

3
22

,0
75

18
2,

19
5

2
22

,4
95

20
,4

68
61

9.
9%

21
,8

37
66

,1
50

19
,1

36
81

1
17

.6
%

20
,6

52
1,

28
0

22
,0

04
21

4,
56

7
3

21
,2

85
19

,7
03

78
8.

0%
21

,0
52

26
7,

19
9

19
,5

36
80

6
9.

0%
19

,9
45

94
8

21
,0

67
3,

43
4,

60
2

4
22

,1
42

20
,1

43
51

9.
9%

21
,8

10
32

4,
84

7
17

,8
65

73
8

23
.9

%
20

,2
81

93
0

21
,8

43
40

,5
36

5
22

,5
23

20
,4

32
56

10
.2

%
21

,9
26

34
8,

28
9

19
,3

52
74

0
16

.4
%

20
,4

43
15

,3
45

21
,9

27
1,

42
4,

15
4

6
22

,7
11

21
,2

73
69

6.
8%

22
,4

23
18

,8
96

19
,6

75
84

0
15

.4
%

21
,3

45
9,

05
0

22
,4

85
1,

08
0,

40
8

7
22

,3
06

20
,6

22
60

8.
2%

21
,8

81
31

9,
00

5
19

,8
77

79
8

12
.2

%
21

,0
81

7,
24

3
22

,0
52

26
3,

20
7

8
22

,1
21

20
,0

86
91

10
.1

%
21

,6
14

24
3,

48
3

20
,3

98
76

7
8.

4%
20

,3
98

76
7

21
,6

22
14

9,
95

2
9

23
,0

06
20

,1
11

70
14

.4
%

22
,7

31
16

8,
94

2
20

,6
82

75
6

11
.2

%
20

,6
82

75
6

22
,9

60
73

,2
43

,0
87

10
22

,2
28

20
,3

55
64

9.
2%

21
,3

67
43

9,
50

9
20

,0
17

79
8

11
.0

%
20

,6
85

1,
78

4
21

,6
39

10
4,

99
2

0.
50

11
44

,1
78

41
,9

62
69

5.
3%

43
,7

96
19

7,
61

1
40

,9
91

88
5

7.
8%

41
,9

62
2,

88
1

43
,8

29
12

,0
61

,0
75

12
45

,5
24

44
,5

44
69

2.
2%

45
,0

23
48

3,
66

8
43

,3
56

80
4

5.
0%

44
,5

59
21

,9
78

45
,1

29
21

1,
51

6
13

46
,5

45
45

,0
78

12
3

3.
3%

46
,2

36
12

8,
18

7
44

,0
14

82
1

5.
8%

45
,1

20
14

,2
22

46
,2

86
3,

80
9,

82
7

14
45

,5
68

44
,2

36
17

2
3.

0%
45

,3
63

31
9,

75
7

43
,5

84
83

8
4.

6%
44

,3
15

18
,9

10
45

,3
69

2,
82

3,
14

4
15

43
,6

34
41

,4
53

51
5.

3%
42

,9
46

12
4,

74
7

37
,5

12
1,

01
2

16
.3

%
41

,4
84

37
,3

93
42

,9
50

24
,7

74
,0

86
16

45
,4

08
43

,3
17

51
4.

8%
44

,9
61

31
4,

09
3

42
,1

60
87

9
7.

7%
43

,3
41

1,
70

5
45

,0
15

95
7,

48
4

17
43

,9
40

41
,9

57
51

4.
7%

43
,2

57
22

3,
38

0
40

,8
16

83
7

7.
7%

42
,2

35
1,

01
6

43
,2

58
80

0,
29

7
18

46
,3

27
44

,5
54

78
4.

0%
45

,5
55

36
1,

55
2

43
,5

90
85

8
6.

3%
44

,5
62

5,
30

1
45

,6
90

59
,0

11
19

45
,7

84
43

,9
87

60
4.

1%
45

,3
43

23
9,

38
9

42
,8

64
94

6
6.

8%
44

,0
07

2,
71

8
45

,4
37

1,
29

9,
78

4
20

45
,3

53
43

,9
84

14
0

3.
1%

44
,7

72
32

2,
38

6
41

,1
88

92
5

10
.1

%
44

,1
74

96
,4

25
44

,8
42

91
5,

31
3

0.
75

21
66

,0
00

64
,4

05
61

2.
5%

65
,5

08
44

5,
08

1
63

,5
55

86
0

3.
8%

64
,6

31
6,

45
8

65
,5

39
2,

79
6,

34
8

22
68

,9
90

66
,9

37
60

3.
1%

68
,1

62
44

4,
88

4
65

,1
18

98
1

5.
9%

67
,4

16
21

,8
71

68
,1

65
21

4,
46

0
23

66
,0

17
63

,8
89

10
5

3.
3%

65
,2

84
42

6,
92

0
62

,3
67

84
8

5.
9%

63
,9

18
2,

85
4

65
,3

44
88

8,
48

2
24

68
,3

71
†

66
,5

70
60

2.
7%

67
,6

10
42

7,
81

2
64

,4
05

96
3

6.
2%

66
,8

94
2,

19
3

67
,6

18
24

7,
24

4
25

68
,7

48
66

,5
79

60
3.

3%
68

,0
07

20
8,

57
7

65
,9

11
84

3
4.

3%
66

,9
03

91
2

68
,1

11
3,

56
6

26
70

,4
62

69
,1

83
69

1.
8%

70
,1

95
22

5,
42

0
66

,3
25

93
0

6.
2%

69
,2

79
15

,7
33

70
,2

60
3,

65
6,

23
6

27
68

,2
80

66
,0

71
60

3.
3%

67
,5

06
14

7,
93

0
64

,6
55

95
4

5.
6%

66
,2

04
19

,1
04

67
,6

97
10

,4
29

,3
59

28
67

,5
23
†

66
,1

64
60

2.
1%

66
,9

77
37

6,
28

0
62

,9
93

84
9

7.
2%

66
,5

40
2,

96
9

67
,0

11
48

,9
32

29
68

,8
45

67
,6

89
60

1.
7%

68
,1

30
39

8,
93

6
62

,3
27

97
5

10
.5

%
67

,7
92

34
4,

28
4

68
,1

56
72

6,
35

7
30

67
,9

51
66

,0
09

60
2.

9%
67

,2
34

40
4,

71
3

60
,9

97
91

4
11

.4
%

66
,0

52
20

,7
54

67
,2

51
3,

33
5,

98
8

Av
er

ag
e

74
5.

4%
29

9,
00

5
85

9
9.

5%
22

,6
35

5,
00

6,
54

0

28 J.P. Bailey, T. Easton, and F. Vitor

Ta
bl

e
6

R
es

ul
ts

ob
ta

in
ed

w
ith

in
st

an
ce

s
fr

om
pr

ob
le

m
se

tm
kn

ap
cb

8
-2

50
va

ri
ab

le
s
×

30
co

ns
tr

ai
nt

s

δ
#

z
∗

O
BA

up
to

50
0,

00
0

N
od

es
C

PL
E

X

1s
tI

nt
eg

er
B

es
tI

nt
eg

er
1s

tI
nt

eg
er

M
at

ch
O

BA
’s

1s
tI

nt
eg

er
M

at
ch

O
BA

’s
B

es
tI

nt
eg

er

z
N

od
e

∆
z

N
od

e
z

N
od

e
∆

z
N

od
e

z
N

od
e

0.
25

1
59

,6
21
†

57
,2

91
23

8
4.

1%
58

,2
81

41
8,

27
7

55
,9

01
2,

15
9

6.
7%

57
,5

79
3,

97
0

58
,5

56
30

,9
74

2
61

,8
32
†

59
,4

82
19

3
4.

0%
60

,6
61

43
2,

81
9

58
,2

35
2,

28
4

6.
2%

59
,7

61
24

1,
00

3
60

,9
83

9,
36

1,
27

0
3

60
,8

84
†

58
,1

79
19

9
4.

6%
59

,6
80

20
1,

50
2

53
,5

50
2,

21
3

13
.7

%
58

,5
32

40
,2

08
59

,6
96

21
2,

53
3

4
60

,5
57
†

58
,7

51
16

2
3.

1%
59

,9
65

36
0,

06
2

56
,6

73
1,

81
4

6.
9%

58
,9

20
15

3,
92

5
60

,0
12

3,
34

9,
59

2
5

59
,9

22
†

58
,0

62
29

6
3.

2%
59

,3
16

43
1,

65
0

53
,2

61
2,

22
9

12
.5

%
58

,1
30

74
,1

91
59

,3
21

25
,5

28
,7

18
6

61
,1

38
†

59
,0

31
16

2
3.

6%
60

,2
29

40
3,

64
7

57
,7

70
2,

14
2

5.
8%

59
,0

41
20

,0
57

60
,3

50
79

1,
28

5
7

59
,4

87
†

57
,5

23
15

4
3.

4%
58

,4
13

37
2,

76
2

53
,9

37
2,

18
7

10
.3

%
57

,5
45

11
5,

89
2

58
,4

59
12

3,
66

1,
29

1
8

59
,5

81
†

57
,3

43
15

4
3.

9%
58

,4
13

17
9,

14
1

54
,4

74
2,

32
7

9.
4%

57
,6

99
23

0,
33

1
58

,4
20

11
,1

73
,1

87
9

60
,2

48
†

57
,3

90
13

5
5.

0%
58

,8
54

20
5,

16
7

56
,2

39
2,

19
5

7.
1%

57
,5

42
29

,7
03

58
,9

02
41

5,
10

8
10

59
,3

69
†

57
,4

57
18

8
3.

3%
58

,1
15

38
9,

56
8

53
,2

62
2,

18
5

11
.5

%
57

,4
93

1,
55

0,
94

5
58

,2
63

29
,8

82
,4

26

0.
50

11
12

3,
73

7
†

12
1,

69
1

15
3

1.
7%

12
2,

80
2

22
2,

03
0

11
3,

35
7

2,
53

6
9.

2%
12

1,
72

7
61

,4
27

,1
84

12
2,

80
4

1,
43

9,
09

1,
92

3
12

12
2,

74
9
†

12
0,

50
5

13
5

1.
9%

12
1,

73
3

35
4,

29
2

11
2,

61
3

2,
50

5
9.

0%
12

0,
51

8
1,

80
5,

92
5

12
1,

74
3

22
,2

88
,0

55
13

12
1,

24
3
†

11
9,

02
1

15
3

1.
9%

12
0,

26
6

48
1,

70
6

10
9,

53
8

2,
72

5
10

.7
%

11
9,

08
6

23
,0

15
,5

53
12

0,
34

9
42

8,
13

0,
02

1
14

11
9,

80
7
†

11
8,

21
4

16
2

1.
3%

11
9,

01
1

35
3,

93
9

11
2,

56
9

2,
38

3
6.

4%
11

8,
22

9
3,

46
5,

70
8

11
9,

03
5

33
,7

55
,9

40
15

11
9,

70
7
†

11
8,

09
7

27
4

1.
4%

11
8,

72
1

47
1,

75
8

10
9,

09
5

2,
45

9
9.

7%
11

8,
17

2
3,

01
2,

82
8

11
8,

76
8

73
,4

88
,6

96
16

12
4,

19
6
†

12
2,

63
2

13
5

1.
3%

12
3,

68
7

24
5,

64
1

11
7,

61
7

2,
42

5
5.

6%
12

2,
68

9
5,

88
8,

96
8

12
3,

69
7

65
5,

51
9,

80
3

17
12

1,
05

0
†

11
8,

85
0

18
8

1.
9%

12
0,

13
6

49
8,

26
4

11
2,

22
8

2,
46

4
7.

9%
11

8,
92

4
22

9,
93

2
12

0,
26

4
13

,1
27

,7
95

18
12

0,
44

1
†

11
8,

19
2

17
5

1.
9%

11
9,

44
7

43
9,

02
4

11
7,

69
0

2,
25

4
2.

3%
11

8,
29

4
3,

82
9

11
9,

46
8

41
0,

03
2

19
12

3,
06

9
†

12
0,

40
8

14
4

2.
2%

12
2,

28
9

38
9,

76
6

11
6,

39
1

2,
44

8
5.

7%
12

0,
41

9
3,

26
2,

60
1

12
2,

36
4

87
,4

13
,2

77
20

11
9,

13
1
†

11
6,

90
5

20
7

1.
9%

11
8,

07
8

19
0,

53
3

11
1,

12
9

2,
33

1
7.

2%
11

7,
00

7
17

2,
65

3
11

8,
11

7
3,

06
5,

81
7

0.
75

21
18

2,
71

5
†

18
0,

57
8

13
5

1.
2%

18
1,

62
7

30
4,

67
7

17
7,

35
6

2,
38

2
3.

0%
18

0,
89

0
19

9,
68

7
18

1,
88

5
1,

46
8,

33
2

22
17

9,
56

2
†

17
7,

00
3

15
7

1.
4%

17
8,

37
9

45
0,

15
8

16
4,

03
4

3,
29

4
9.

5%
17

7,
08

7
29

,6
91

,4
77

17
8,

38
3

10
,3

21
,4

10
,9

07
23

18
5,

06
8
†

18
2,

70
8

14
8

1.
3%

18
3,

67
4

12
8,

50
0

17
9,

16
6

2,
50

9
3.

3%
18

2,
71

2
63

,9
55

18
3,

77
6

76
1,

07
7

24
18

1,
47

9
†

17
9,

52
3

22
8

1.
1%

18
0,

53
4

32
9,

33
0

17
5,

52
9

2,
50

9
3.

4%
17

9,
59

4
19

9,
85

5
18

0,
59

2
12

,8
85

,7
72

25
18

4,
17

6
†

18
2,

16
2

15
3

1.
1%

18
3,

04
5

34
4,

36
3

18
0,

14
0

2,
16

5
2.

2%
18

2,
27

6
6,

91
6

18
3,

10
4

97
,1

25
26

17
8,

35
3
†

17
6,

64
1

14
4

1.
0%

17
7,

15
0

33
1,

78
1

16
9,

83
5

2,
56

0
5.

0%
17

6,
84

4
25

2,
24

7
17

7,
20

2
68

4,
94

4
27

18
6,

15
7
†

18
4,

91
1

34
8

0.
7%

18
5,

26
8

95
,8

10
18

1,
76

3
2,

23
2

2.
4%

18
4,

91
1

1,
03

1,
07

9
18

5,
35

7
3,

06
3,

62
0

28
18

0,
56

2
†

17
8,

42
6

13
5

1.
2%

17
9,

69
0

42
6,

15
1

17
1,

37
8

2,
51

9
5.

4%
17

8,
65

8
12

,7
90

,4
22

17
9,

69
3

1,
11

9,
80

7,
22

7
29

18
3,

76
7
†

18
1,

50
8

18
0

1.
2%

18
2,

44
0

25
7,

99
4

17
1,

15
1

2,
59

7
7.

4%
18

1,
68

4
1,

76
6,

51
1

18
2,

60
6

5,
18

6,
89

0
30

18
3,

27
6
†

18
1,

24
1

13
5

1.
1%

18
2,

26
5

44
7,

98
9

17
3,

63
4

2,
73

2
5.

6%
18

1,
24

5
4,

28
1,

14
7

18
2,

29
2

3,
15

4,
00

7,
33

6
Av

er
ag

e
17

9
2.

2%
33

8,
61

0
2,

39
2

7.
0%

5,
16

7,
62

3
58

6,
00

2,
36

6

Octanary Polyhedral Branch and Bound for Integer Programs 29

Ta
bl

e
7

R
es

ul
ts

ob
ta

in
ed

w
ith

in
st

an
ce

s
fr

om
pr

ob
le

m
se

tm
kn

ap
cb

9
-5

00
va

ri
ab

le
s
×

30
co

ns
tr

ai
nt

s

δ
#

z
∗

O
BA

up
to

50
0,

00
0

N
od

es
C

PL
E

X

1s
tI

nt
eg

er
B

es
tI

nt
eg

er
1s

tI
nt

eg
er

M
at

ch
O

BA
’s

1s
tI

nt
eg

er
M

at
ch

O
BA

’s
B

es
tI

nt
eg

er

z
N

od
e

∆
z

N
od

e
z

N
od

e
∆

z
N

od
e

z
N

od
e

0.
25

1
12

7,
69

3
†

12
4,

36
7

26
0

2.
7%

12
6,

06
4

30
5,

48
3

12
0,

89
4

4,
40

4
5.

6%
12

4,
55

1
24

8,
73

9
12

6,
11

8
15

,6
58

,4
21

2
12

4,
24

2
†

12
2,

12
7

32
7

1.
7%

12
2,

84
0

19
9,

41
6

11
2,

92
9

4,
36

9
10

.0
%

12
2,

40
4

38
,5

97
,2

51
12

2,
91

3
28

5,
68

4,
35

7
3

12
7,

83
3
†

12
4,

73
6

35
9

2.
5%

12
5,

63
7

39
3,

54
6

11
8,

69
0

4,
33

3
7.

7%
12

4,
76

5
14

2,
98

5
12

5,
64

1
53

3,
86

6
4

12
3,

83
9
†

12
1,

65
2

39
0

1.
8%

12
2,

60
5

37
0,

10
5

11
4,

32
1

4,
48

0
8.

3%
12

1,
68

3
2,

53
3,

11
4

12
2,

75
8

15
8,

31
9,

81
8

5
12

8,
11

4
†

12
5,

89
3

26
9

1.
8%

12
6,

66
6

27
5,

09
7

12
3,

46
3

4,
28

6
3.

8%
12

5,
93

8
47

1,
93

1
12

6,
73

3
3,

14
0,

03
9

6
12

5,
05

8
†

12
2,

33
1

52
3

2.
2%

12
3,

62
2

48
6,

55
3

12
0,

54
2

4,
15

3
3.

7%
12

2,
40

3
24

6,
40

4
12

3,
64

0
16

,2
85

,5
78

7
12

4,
43

8
†

12
1,

71
9

32
3

2.
2%

12
2,

81
7

44
9,

77
6

11
4,

86
8

4,
26

0
8.

3%
12

1,
77

4
80

,3
23

12
2,

84
2

1,
26

0,
07

6
8

12
5,

90
5
†

12
2,

77
8

25
1

2.
5%

12
4,

18
9

41
2,

27
5

12
0,

46
5

4,
25

7
4.

5%
12

2,
98

7
14

9,
44

7
12

4,
23

5
2,

66
5,

78
1

9
12

3,
71

2
†

12
1,

43
7

38
1

1.
9%

12
2,

33
4

24
1,

06
1

11
5,

67
9

4,
41

5
6.

9%
12

1,
66

4
94

,9
55

12
2,

39
5

1,
05

7,
28

1
10

12
6,

46
9
†

12
3,

63
5

44
4

2.
3%

12
4,

53
9

48
9,

60
3

11
1,

02
2

4,
65

2
13

.9
%

12
3,

71
7

3,
35

0,
69

8
12

4,
58

0
31

,7
99

,5
63

0.
50

11
25

1,
10

7
†

24
9,

07
6

32
3

0.
8%

24
9,

64
4

6,
66

4
24

3,
77

7
4,

90
1

3.
0%

24
9,

08
0

88
,0

01
,8

86
24

9,
66

9
58

4,
76

2,
02

4
12

25
2,

36
4
†

25
0,

01
2

25
1

0.
9%

25
1,

07
9

22
1,

13
3

23
4,

66
5

5,
03

8
7.

5%
25

0,
03

8
21

8,
97

0,
98

8
25

1,
11

2
1,

03
4,

42
7,

14
9

13
25

2,
66

0
†

25
0,

69
3

32
7

0.
8%

25
1,

30
3

49
,6

25
23

3,
23

8
5,

24
5

8.
3%

25
0,

83
6

42
,4

22
,8

64
25

1,
31

5
82

,1
88

,9
18

14
24

7,
33

5
†

24
3,

98
0

47
1

1.
4%

24
5,

49
7

42
0,

77
8

22
8,

25
8

5,
71

8
8.

4%
24

5,
06

5
2,

90
4,

19
4,

20
8

24
5,

51
0

3,
62

4,
24

1,
24

8
15

25
3,

27
6
†

25
0,

61
6

31
8

1.
1%

25
1,

52
2

29
9,

87
7

24
5,

53
2

4,
77

4
3.

2%
25

0,
66

7
42

,9
57

,6
58

25
1,

53
0

5,
43

0,
13

0,
01

4
16

24
7,

35
6
†

24
4,

39
1

25
1

1.
2%

24
5,

87
7

15
1,

56
4

24
1,

49
4

4,
39

4
2.

4%
24

4,
44

9
8,

84
0

24
5,

88
9

21
,5

51
,5

56
17

25
1,

99
9
†

24
8,

90
4

31
4

1.
2%

25
0,

12
6

40
7,

70
0

23
2,

88
9

5,
23

6
8.

2%
24

9,
04

7
20

,1
15

,3
68

25
0,

16
5

37
6,

44
7,

22
4

18
25

0,
20

0
†

24
7,

71
2

25
1

1.
0%

24
8,

88
3

31
8,

64
2

24
0,

85
4

4,
71

5
3.

9%
24

7,
72

0
6,

93
7,

38
1

24
8,

99
3

29
,1

48
,9

90
19

25
1,

99
9
†

24
9,

60
0

39
0

1.
0%

25
0,

56
4

30
0,

55
3

23
8,

58
1

4,
66

8
5.

6%
24

9,
60

1
6,

62
9,

75
3

25
0,

56
4

60
,9

62
,7

63
20

25
2,

20
4
†

24
9,

65
9

36
8

1.
0%

25
0,

74
6

11
9,

27
0

23
7,

34
6

4,
91

1
6.

3%
24

9,
67

7
10

,5
30

,4
86

25
0,

84
8

10
2,

12
0,

96
7

0.
75

21
37

6,
17

5
†

37
4,

53
2

28
7

0.
4%

37
4,

86
0

13
1,

36
5

36
5,

16
9

4,
66

3
3.

0%
37

4,
53

5
71

,8
02

,2
01

37
4,

86
9

19
8,

92
4,

58
7

22
37

1,
44

6
†

36
8,

81
0

26
0

0.
7%

36
9,

97
7

11
6,

80
9

36
1,

43
6

4,
66

6
2.

8%
36

8,
82

5
4,

83
3,

57
8

37
0,

13
9

34
3,

66
1,

01
2

23
38

5,
44

7
†

38
3,

24
8

26
0

0.
6%

38
4,

39
1

17
8,

18
6

37
6,

73
4

4,
93

7
2.

3%
38

3,
25

8
42

,6
98

,1
24

38
4,

54
4

1,
09

2,
14

7,
63

9
24

37
9,

40
4
†

37
6,

78
5

29
6

0.
7%

37
7,

68
0

23
0,

29
4

36
5,

99
3

5,
63

0
3.

7%
37

6,
88

5
3,

76
4,

66
0,

45
8

37
7,

69
5

6,
61

2,
57

2,
26

0
25

38
0,

68
2
†

37
8,

72
9

33
2

0.
5%

37
9,

27
7

16
0,

48
4

36
3,

38
5

4,
84

1
4.

8%
37

8,
74

1
60

,3
06

,6
38

37
9,

36
2

38
6,

51
8,

88
9

26
37

6,
81

3
†

37
4,

64
2

25
1

0.
6%

37
5,

51
3

27
0,

26
7

35
8,

38
7

5,
11

8
5.

1%
37

4,
67

3
2,

83
4,

24
8,

98
8

37
5,

54
0

8,
48

1,
37

8,
48

2
27

37
6,

55
7
†

37
4,

44
2

26
0

0.
6%

37
5,

47
2

48
3,

97
3

35
4,

02
9

5,
09

0
6.

4%
37

4,
47

7
6,

77
4,

90
8

37
5,

53
6

52
9,

25
3,

05
7

28
38

5,
74

5
†

38
3,

16
1

34
1

0.
7%

38
4,

14
4

27
0,

18
5

37
9,

58
8

4,
59

6
1.

6%
38

3,
20

4
1,

13
7,

45
3

38
4,

17
3

55
,1

94
,7

68
29

37
7,

72
6
†

37
6,

01
3

31
4

0.
5%

37
6,

97
6

19
0,

22
6

36
3,

13
1

5,
11

7
4.

0%
37

6,
04

4
54

0,
77

1,
97

5
37

6,
99

3
9,

28
8,

33
0,

39
7

30
37

1,
85

6
†

36
9,

59
9

40
3

0.
6%

37
0,

35
4

46
8,

27
1

36
0,

51
7

5,
02

5
3.

1%
36

9,
60

7
16

,5
40

,1
24

37
0,

38
9

2,
45

8,
58

0,
59

1
Av

er
ag

e
32

7
1.

3%
28

0,
62

6
4,

76
3

5.
5%

35
7,

68
1,

99
1

1,
37

6,
96

4,
91

1

