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Abstract

We present a general class of compressed sensing matrices which are then demonstrated to have associated
sublinear-time sparse approximation algorithms. We then develop methods for constructing specialized matrices from
this class which are sparse when multiplied with a discrete Fourier transform matrix. Ultimately, these considerations
improve previous sampling requirements for deterministic sparse Fourier transform methods.

1 Introduction
This paper considers methods for designing matrices which yield near-optimal nonlinear approximations to the Fourier
transform of a given function, f : [0, 2π]→ C. Suppose that f is a bandlimited function so that f̂ ∈ CN, where N is
large. An optimal k-term trigonometric approximation to f is given by

f opt
k (x) =

k∑
j=1

f̂
(
ω j

)
e
iω jx,

where ω1, . . . , ωN ∈ (−N/2,N/2] ∩ Z are ordered by the magnitudes of their Fourier coefficients so that∣∣∣ f̂ (ω1)
∣∣∣ ≥ ∣∣∣ f̂ (ω2)

∣∣∣ ≥ · · · ≥ ∣∣∣ f̂ (ωN)
∣∣∣.

The optimal k-term approximation error is then∥∥∥ f − f opt
k

∥∥∥
2

=
∥∥∥ f̂ − f̂ opt

k

∥∥∥
2
. (1)

It has been demonstrated recently that any periodic function, f : [0, 2π] → C, can be accurately approximated via
sparse Fourier transform (SFT) methods which run in O(k2 log4 N) time (see [25, 26] for details). When the function is
sufficiently Fourier compressible (i.e., when k << N yields a small approximation error in Equation (1) above), these
methods can accurately approximate f much more quickly than traditional Fast Fourier Transform (FFT) methods
which run in O(N log N) time. Furthermore, these SFT methods require only O(k2 log4 N) function evaluations as
opposed to the N function evaluations required by a standard FFT method.

Although the the theoretical guarantees of SFT algorithms appear promising, current algorithmic formulations
suffer from several practical shortfalls. Principally, the algorithms currently utilize number theoretic sampling sets
which are constructed in a suboptimal fashion. In this paper we address this deficiency by developing computational
methods for constructing number theoretic matrices of the type required by these SFT methods which are nearly
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optimal in size. In the process, we demonstrate that this specific problem is a more constrained instance of a much
more general matrix design problem with connections to compressed sensing matrix constructions [14, 8, 9, 7, 2],
discrete uncertainty principles [17], nonadaptive group testing procedures [18, 20], and codebook design problems
[38, 15, 6] in signal processing.

1.1 General Problem Formulation: Compressed Sensing in the Fourier Setting
Over the past several years, a stream of work in compressed sensing has provided a general theoretical framework
for approximating general functions in terms of their optimal k-term approximation errors (see [19] and references
therein). Indeed, the SFT design problem we are considering herein also naturally falls into this setting. Consider
the following discretized version of the sparse Fourier approximation problem above: Let ~f ∈ CN be a vector of N
equally spaced evaluations of f on [0, 2π], and define F to be the N × N Discrete Fourier Transform (DFT) matrix

defined by Fi, j = e

−2πi·i· j
N
√

N
. Note that F ~f will be compressible (i.e., sparse). Compressed sensing methods allow us

to construct an m × N matrix,M, with m minimized as much as possible subject to the constraint that an associated
approximation algorithm, ∆M : Cm

→ CN, can still accurately approximate any given f̂ = F ~f (and, therefore, f
itself). More exactly, compressed sensing methods allow us to minimize m, the number of rows inM, as a function
of k and N such that ∥∥∥∥ ∆M

(
M f̂

)
− f̂

∥∥∥∥
p
≤ Cp,q · k

1
p−

1
q
∥∥∥ f̂ − f̂ opt

k

∥∥∥
q (2)

holds for all f̂ ∈ CN in various fixed lp,lq norms, 1 ≤ q ≤ p ≤ 2, for an absolute constant Cp,q ∈ R (e.g., see [12, 19]).
Note that this implies that f̂ will be recovered exactly if it contains only k nonzero Fourier coefficients. Similarly, it
will be accurately approximated by ∆M

(
M f̂

)
any time it is well represented by its largest k Fourier modes.

In this paper we will focus on constructing m × N compressed sensing matrices, M, for the Fourier recovery
problem which meet the following four design requirements:

1. Small Sampling Requirements: MF should be highly column-sparse (i.e., the number of columns ofMF
which contain nonzero entries should be significantly smaller than N). Note that wheneverMF has this prop-
erty we can compute M f̂ by reading only a small fraction of the entries in ~f . Once the number of required
function samples/evaluations is on the order of N, a simple fast Fourier transform based approach will be diffi-
cult to beat computationally.

2. Accurate Approximation Algorithms: The matrixM needs to have an associated approximation algorithm,
∆M, which allows accurate recovery. More specifically, we will require an instance optimal error guarantee
along the lines of Equation (2).

3. Efficient Approximation Algorithms: The matrix M needs to have an associated approximation algorithm,
∆M, which is computationally efficient. In particular, the algorithm should be at least polynomial time in N
(preferably, o(N log N)-time since N is presumed to be large and we have the goal in mind of competing with
an FFT).

4. Guaranteed Uniformity: Given only k,N ∈ Z+ and p, q ∈ [1, 2], one fixed matrix M together with a fixed
approximation algorithm ∆M should be guaranteed to satisfy the three proceeding properties uniformly for all
vectors f̂ ∈ CN.

The remainder of this paper is organized as follows: We begin with a brief survey of recent sparse Fourier approx-
imation techniques related to compressed sensing in Section 2. In Section 3 we introduce matrices of a special class
which are useful for fast sparse Fourier approximation and investigate their properties. Most importantly, we demon-
strate that any matrix from this class can be used in combination with an associated fast approximation algorithm in
order to produce a sublinear-time (in N) compressed sensing method. Next, in Section 4, we present a deterministic
construction of these matrices that specifically supports sublinear-time Fourier approximation. In Section 5 this matrix
construction method is cast as an optimal design problem whose objective is to minimize Fourier sampling require-
ments. Furthermore, lemmas are proven which allow the optimal design problem to be subsequently formulated as
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a linear integer program in Section 6. Finally, in Section 7, we empirically investigate the sizes of the optimized
deterministic matrices presented herein.

2 Compressed Sensing and The Restricted Isometry Property
Over the past few years, compressed sensing has focused primarily on utilizing matrices, M, which satisfy the Re-
stricted Isometry Principle (RIP) [8] in combination with l1-minimization based approximation methods [8, 9, 7]. In
fact, RIP matrices appear to be the critical partner in the RIP matrix/l1-minimization pair since RIP matrices can also
be used for compressed sensing with numerous other approximation algorithms besides l1-minimization (e.g., Regu-
larized Orthogonal Matching Pursuit [32, 33], CoSaMP [31], Iterative Hard Thresholding [4], etc.). Hence, we will
consider RIP matrices in isolation.

Definition 1. Let p ∈ [1,∞), N, k ∈ N, and ε ∈ (0, 1). A matrixM with complex entries has the Restricted Isometry
Property, RIPp(N,k,ε), if

(1 − ε) ‖x‖pp ≤ ‖Mx‖pp ≤ (1 + ε) ‖x‖pp

for all x ∈ CN containing at most k nonzero coordinates.

It has been demonstrated that Fourier RIP2(N,k,ε) matrices of size O
(
k log4 N

ε2

)
×N exist [36]. More specifically, an

m × N submatrix of the N × N Inverse DFT (IDFT) matrix, F −1, formed by randomly selecting m rows of F −1 will

satisfy the RIP2(N,k,ε) with high probability whenever m is Ω
(
k log2 N log2 k

ε2

)
[35]. Such a matrix will clearly satisfy

our small sampling requirement since any m×N submatrix of the N×N IDFT matrix will generate a vector containing
exactly m ones after being multiplied against the N×N DFT matrix. Furthermore, l1-minimization will yield accurate
approximation of Fourier compressible signals when utilized in conjunction with an IDFT submatrix that has the RIP2.
However, these random Fourier RIP2 constructions have two deficiencies: First, all existing approximation algorithms,
∆M, associated with Fourier RIP2(N,k,ε) matrices,M, run in Ω

(
N log N

)
time. Thus, they cannot generally compete

with an FFT computationally. Second, randomly generated Fourier submatrices are only guaranteed to have the RIP2
with high probability, and there is no tractable means of verifying that a given matrix has the RIP2. In order to verify
Definition 1 for a given m × N matrix one generally has to compute the condition numbers of all

(N
k
)

of its m × k
submatrices.

Several deterministic RIP2(N,k,ε) matrix constructions exist which simultaneously address the guaranteed unifor-
mity requirement while also guaranteeing small Fourier sampling needs [27, 5]. However, they all utilize the notion
of coherence [14] which is discussed in Section 2.2. Hence, we will postpone a more detailed discussion of these
methods until later. For now, we simply note that no existing deterministic RIP2(N,k,ε) matrix constructions currently
achieve a number of rows (or sampling requirements), m, that are o

(
k2 polylog(N)

)
for all k = o

(√
N

)
as N grows

large. In contrast, RIP matrix constructions related to highly unbalanced expander graphs can currently break this
“quadratic-in-k bottleneck”.

2.1 Unbalanced Expander Graphs
Recently it has been demonstrated that the rescaled adjacency matrix of any unbalanced expander graph will be a RIP1
matrix [2, 3].

Definition 2. Let N, k, d ∈ N, and ε ∈ (0, 1). A simple bipartite graph G = (A,B,E) with |A| ≥ |B| and left degree at
least d is a (k, d, ε)-unbalanced expander if, for any X ⊂ A with |X| ≤ k, the set of neighbors, |N(X)|, of X has size
|N(X)| ≥ (1 − ε)d|X|.

Theorem 1. (See [2, 3]). Consider an m ×N matrixM that is the adjacency matrix of a regular (k, d, ε)-unbalanced
expander, where 1/ε and d are both smaller than N. Then, there exists an absolute constant C > 1 such that the
rescaled matrix,M / d1/p, satisfies the RIPp(N,k,Cε) for all 1 ≤ p ≤ 1 + 1/ log N.

3



Note that the RIP1 property for unbalanced expanders is with respect to the l1 norm, not the l2 norm. Neverthe-
less, matrices with the RIP1 property also have associated approximation algorithms that can produce accurate sparse
approximations along the lines of Equation (2). Examples include l1-minimization [2, 3] and Matching Pursuit [24].
Perhaps most impressive among the approximation algorithms associated with unbalanced expander graphs are those
which appear to run in o(N log N)-time (see the appendix of [3]). Considering these results with respect to the four
design requirements from Section 1.1, we can see that expander based RIP methods are poised to satisfy both the
second and third requirements. Furthermore, by combining Theorem 1 with recent explicit constructions of unbal-
anced expander graphs [22], we can obtain an explicit RIP1 matrix construction of near-optimal dimensions (which,
among other things, shows that RIP1 matrices may also satisfy our fourth Section 1.1 design requirement regarding
guaranteed uniformity). We have the following theorem:

Theorem 2. Let ε ∈ (0, 1), p ∈ [1, 1 + 1/ log N], and N, k ∈ N such that N greater than both 1/ε and k. Next, choose
any constant parameter α ∈ R+. Then, there exists a constant c ∈ R+ such that a

O
(
k1+α (

log N log k/ε
)2+2/α

)
×N

matrix guaranteed to have the RIPp(N,k,ε) can be constructed in O
(
N ·

(
log N/ε

)c(1+1/α)
)
-time.

Proof: Consider Theorem 1.3 in [22] in combination with Theorem 1 above. 2

Theorem 2 demonstrates the existence of deterministically constructible RIP1 matrices with a number of rows, m,
that scales like O

(
k1+α polylog(N)

)
for all k < N and fixed ε, α ∈ (0, 1). Furthermore, the run time complexity of the

RIP1 construction algorithm is modest (i.e., O
(
N2

)
-time). Although a highly attractive result, there is no guarantee

that Guruswami et al.’s unbalanced expander graphs will generally have adjacency matrices, M, which are highly
column-sparse after multiplication against a DFT matrix (see design requirement number 1 in Section 1.1).1 Hence,
it is unclear whether expander graph based RIP1 results can be utilized to make progress on our compressed sensing
matrix design problem in the Fourier setting. Nevertheless, this challenging avenue of research appears potentially
promising, if not intractably difficult.

2.2 Incoherent Matrices
As previously mentioned, all deterministic RIP2(N,k,ε) matrix constructions (e.g., see [16, 27, 35, 5] and references
therein) currently utilize the notion of coherence [14].

Definition 3. Let µ ∈ [0, 1]. An m × N matrix,M, with complex entries is called µ-coherent if both of the following
properties hold:

1. Every column ofM, denotedM·, j ∈ Cm for 0 ≤ j ≤ N − 1, is normalized so that ‖M·, j‖2 = 1.

2. For all j, l ∈ [0,N) with j , l, the associated columnsM·, j,M·,l ∈ Cm have
∣∣∣M·, j · M·,l∣∣∣ ≤ µ.

Theorem 3. (See [35]). Suppose that an m × N matrix, M ∈ Cm×N, is µ-coherent. Then, M will also have the
RIP2(N,k,(k − 1)µ).

Matrices with small coherence are of interest in numerous coding theoretic settings. Note that the column vectors
of a real valued matrix with small coherence, µ, collectively form a spherical code. More generally, the columns of
an incoherent complex valued matrix can be used to form codebooks for various channel coding applications in signal
processing [30, 37]. These applications have helped to motivate a considerable amount of work with incoherent codes
(i.e., incoherent matrices) over the past several decades. As a result, a plethora of µ-coherent matrix constructions
exist (e.g., see [38, 15, 6, 5], and references therein).

1In fact,M multiplied against a DFT matrix need not be exactly sparse. By appealing to ideas from [23], one can see that it is enough to have a
relatively small perturbation ofM be column-sparse after multiplication against a DFT matrix.
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As we begin to demonstrate in the next section, matrices with low coherence can satisfy all four Fourier design
requirements listed in Section 1.1. However, there are trade-offs. Most notably, the Welch bound [38] implies that any
µ-coherent m ×N matrix,M ∈ Cm×N, must have a number of rows

m ≥
N

(N − 1)µ2 + 1
.

As a consequence, arguments along the lines of Theorem 3 can only use µ-coherent matrices to produce RIP2(N,k,ε)

matrices having m = Ω
(
k2/ε2

)
rows. In contrast, O

(
k log4 N

ε2

)
× N Fourier RIP2(N,k,ε) matrices are known to exist

(see above). Hence, although µ-coherent matrices do allow one to obtain small Fourier sampling requirements, these
sampling requirements all currently scale quadratically with k instead of linearly.2

Setting aside the quadratic scaling of m with k, we can see that several existing deterministic RIP2(N,k,ε) matrix
constructions based on coherence arguments (e.g., [27, 5]) immediately satisfy all but one of the Fourier design require-
ments listed in Section 1.1. First, these constructions lead to Fourier sampling requirements which, although generally
quadratic in the sparsity parameter k, are nonetheless o(N). Second, these matrices can be used in conjunction with ac-
curate approximation algorithms (e.g., l1-minimization) since they will have the RIP2. Third, the deterministic nature
of these RIP2 matrices guarantees uniform approximation results for all possible periodic functions. The only unsat-
isfied design requirement pertains to the computational efficiency of the approximation algorithms (see requirement 3
in Section 1.1). As mentioned previously, all existing approximation algorithms associated with Fourier RIP2(N,k,ε)
matrices run in Ω

(
N log N

)
time. In the next section we will present a general class of incoherent matrices which have

fast approximation algorithms associated with them. As a result, we will develop a general framework for constructing
fast sparse Fourier algorithms which are capable of approximating compressible signals more quickly than standard
FFT algorithms.

3 A Special Class of Incoherent Matrices
In this section, we will consider binary incoherent matrices,M ∈ {0, 1}m×N, as a special subclass of incoherent ma-
trices. As we shall see, binary incoherent matrices can be used to construct RIP2 matrices (e.g., via Theorem 3),
unbalanced expander graphs (and, therefore, RIPp≈1 matrices via Theorem 1), and nonadaptive group testing matrices
[18]. In addition, we prove that any binary incoherent matrix can be modified to have an associated accurate approx-
imation algorithm, ∆M : Cm

→ CN, with sublinear o(N) run time complexity. This result generalizes the fast sparse
Fourier transforms previously developed in [26] to the standard compressed sensing setup while simultaneously pro-
viding a framework for the subsequent development of similar Fourier results. We will begin this process by formally
defining (K, α)-coherent matrices and then noting some accompanying bounds.

Definition 4. Let K, α ∈ [1,m] ∩N. An m ×N binary matrix,M ∈ {0, 1}m×N, is called (K, α)-coherent if both of the
following properties hold:

1. Every column ofM contains at least K nonzero entries.

2. For all j, l ∈ [0,N) with j , l, the associated columns,M·, j andM·,l ∈ {0, 1}m, haveM·, j · M·,l ≤ α.

Several deterministic constructions for (K, α)-coherent matrices have been implicitly developed as part of RIP2
matrix constructions (e.g., see [16, 27]). It is not difficult to see that any (K, α)-coherent matrix will be α

K -coherent
after having its columns normalized. Hence, the Welch bound also applies to (K, α)-coherent matrices. Below we will
both develop tighter lower row bounds, and provide a preliminary demonstration of the existence of fast o(N)-time
compressed sensing algorithms related to incoherent matrices. This will be done by demonstrating the relationship
between (K, α)-coherent matrices and group testing matrices.

2It is worth noting that Bourgain et al. recently used methods from additive combinatorics in combination with modified coherence arguments to
construct explicit m ×N matrices, with m = O(k2−ε′ ), which have the Fourier RIP2(N,k,m−ε

′

) whenever k = Ω(N1/2−ε′ ) [5]. Here ε′ > 0 is some
constant real number. Hence, it is possible to break the previously mentioned “quadratic bottleneck” for RIP2(N,k,ε) matrices when k is sufficiently
large.
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3.1 Group Testing: Lower Bounds and Fast Recovery
Group testing generally involves the creation of testing procedures which are designed to identify a small number of
interesting items hidden within a much larger set of uninteresting items [18, 20]. Suppose we are given a collection of
N items, each of which is either interesting or uninteresting. The status of each item in the set can then be represented
by a boolean vector ~x ∈ {0, 1}N. Interesting items are denoted with a 1 in the vector, while uninteresting items are
marked with a 0. Because most items are uninteresting, ~x will contain at most a small number, d < N, of ones. Our
goal is to correctly identify the nonzero entries of ~x, thereby recovering ~x itself.

Consider the following example. Suppose that ~x corresponds to a list of professional athletes, at most d of which
are secretly using a new performance enhancing drug. Furthermore, imagine that the only test for the drug is an
expensive and time consuming blood test. The trivial solution would be to collect blood samples from all N athletes
and then test each blood sample individually for the presence of the drug. However, this is unnecessarily expensive
when the test is accurate and the number of drug users is small. A cheaper solution involves pooling portions of each
player’s blood into a small number of well-chosen testing pools. Each of these testing pools can then be tested once,
and the results used to identify the offenders.

A pooling-based testing procedure as described above can be modeled mathematically as a boolean matrixM ∈
{0, 1}m×N. Each row ofM corresponds to a subset of the N athletes’ whose blood will be pooled, mixed, and then
tested once for the presence of the drug. Hence, the goal of our nonadaptive group testing can be formulated at follows:
Design a matrix,M ∈ {0, 1}m×N, with as few rows as possible so that any boolean vector, ~x ∈ {0, 1}N, containing at
most d nonzero entries can be recovered exactly from the result of the pooled tests,M~x ∈ {0, 1}m. Here all arithmetic is
boolean, with the boolean OR operator replacing summation and the boolean AND operator replacing multiplication.
One well studied solution to this nonadaptive group testing problem is to letM be a d-disjunct matrix.

Definition 5. An m × N binary matrix,M ∈ {0, 1}m×N, is called d-disjunct if for any subset of d + 1 columns ofM,
C = {c1, c2, . . . , cd+1} ⊂ [1,N] ∩N, there exists a subset of d + 1 rows ofM, R = { j1, j2, . . . , jd+1} ⊂ [1,m] ∩N,
such that the submatrix 

M j1,c1 M j1,c2 . . . M j1,cd+1

M j2,c1 M j2,c2 . . . M j2,cd+1

...
M jd+1,c1 M jd+1,c2 . . . M jd+1,cd+1

 .
is the (d + 1) × (d + 1) identity matrix.3

Nonadaptive group testing is closely related to the recovery of “exactly sparse” vectors ~x ∈ RN containing exactly d
nonzero entries. In fact, it is not difficult to modify standard group testing techniques to solve such problems. However,
it is not generally possible to modify these approaches in order to obtain methods capable of achieving the type of
approximation guarantees we are interested in here (i.e., see Equation (2)). However, fast o(N)-time approximation
algorithms based on d-disjunct matrices with weaker approximation guarantees have been developed [13]. Hence,
if we can relate (K, α)-coherent matrices to d-disjunct matrices, we will informally settle the design requirement
regarding the existence of fast approximation algorithms (see the third design requirement in Section 1.1).

Lemma 1. An m ×N (K, α)-coherent matrix,M, will also be b(K − 1)/αc-disjunct.

Proof: Choose any subset of b(K− 1)/αc+ 1 columns fromM, C = {c1, c2, . . . , cb(K−1)/αc+1} ⊂ [1,N]∩N. Consider
the columnM·,c1 ∈ {0, 1}

m. BecauseM is a binary (K, α)-coherent matrix, we know that there can be at most α rows,
j, for whichM j,c1 = M j,c2 = 1. Hence, there are at most αb(K− 1)/αc ≤ K− 1 total rows in whichM·,c1 will share
a 1 with any of the other columns listed in C. SinceM·,c1 contains at least K ones, there exists a row, j1 ∈ [1,m] ∩N,
containing a 1 in column c1 and zeroes in all of C− {c1}. Repeating this argument with c2, . . . , cb(K−1)/αc+1 replacing c1
above proves the lemma. 2

3This is not the standard statement of the definition. Traditionally, a boolean matrixM is said to be d-disjunct if the boolean OR of any d of
its columns does not contain any other column [18, 20]. However, these two definitions are essentially equivalent. The d-disjunct condition is also
equivalent to the (d + 1)-strongly selective condition utilized by compressed sensing algorithms based on group testing matrices [13].
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Any m × N d-disjunct matrix must have m = Ω
(
min{d2 logd N,N}

)
[11]. Furthermore, near-optimal explicit d-

disjunct measurement matrix constructions of size O(d2 log N) ×N exist [34]. Of more interest here, however, is that
the lower bound for d-disjunct matrices together with Lemma 1 provides a lower bound for (K, α)-coherent matrices.
More specifically, we can see that any m ×N (K, α)-coherent matrix must have m = Ω

(
min

{
(K2/α2) logK/α N,N

})
.

In the next section we will demonstrate that ideas from previous fast compressed sensing approximation methods
based on d-disjunct matrices [13] can be utilized in combination with the properties of (K, α)-coherent matrices to
obtain the type of stronger approximation guarantees we consider in this paper. In the process we will simultaneously
decrease the previously obtained runtime complexities of these algorithms for general signals. As a result, we will
obtain entirely deterministic sublinear-time (in N) approximation algorithms which match the runtime and approxima-
tion guarantees previously only achieved with uniformly high probability by sublinear-time methods based on random
measurement matrices (e.g., [21]).

3.2 Properties of Binary Incoherent Matrices
The following theorem summarizes several important properties of (K, α)-coherent matrices with respect to general
sparse approximation problems. Most importantly, the first statement guarantees the existence of a simple sublinear-
time recovery algorithm, ∆M, which is guaranteed to satisfy an approximation guarantee along the lines of Equation 2
for all (K, α)-coherent matrices,M, and vectors ~x ∈ CN.

Theorem 4. LetM be an m ×N (K, α)-coherent matrix. Then, all of the following statements will hold:

1. Let ε ∈ (0, 1], k ∈
[
1,K · ε4α

)
∩ N. There exists an approximation algorithm based on a modified form ofM,

∆M : Cmdlog2 Ne+m
→ CN, that is guaranteed to output a vector ~zS ∈ C

N satisfying

∥∥∥~x − ~zS

∥∥∥
2
≤

∥∥∥~x − ~x opt
k

∥∥∥
2

+
22ε

∥∥∥∥~x − ~xopt
(k/ε)

∥∥∥∥
1

√
k

for all ~x ∈ CN. Most importantly, ∆M can be evaluated in O
(
m log N

)
-time. See Appendix A for details.

2. Define the m×N matrixW by normalizing the columns ofM so thatWi, j =Mi, j/
√
‖M·, j‖1. Then, the matrix

W will be α
K -coherent.

3. Furthermore, the m ×N matrixW defined above will have the RIP2(N,k,(k − 1)α/K).4

4. Define the m ×N matrixW byWi, j =Mi, j/
(
‖M·, j‖1

) 1
p . Then, the matrixW will have the

RIPp(N,k,C(k − 1)α/K) for all 1 ≤ p ≤ 1 + 1
log N , where C is an absolute constant larger than 1/2.

5. M is b(K − 1)/αc-disjunct.

6. M has at least m = Ω
(
min

{
(K2/α2) logK/α N,N

})
rows.

Proof: The proof of each part is as follows.

1. See Appendix A.

2. The proof follows easily from the definitions.

3. The proof follows from part 2 together with Theorem 3. However, for the sake of completeness we will recount
the proof in more detail here.

4It is worth noting that modified (K, α)-coherent matrices can also be used as Johnson-Lindenstrauss embeddings. See [29] together with [1] to
learn more about the near equivalence of Johnson-Lindenstrauss embeddings and RIP2 matrices.
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Let X = {x1, . . . , xk} ⊂ [0,N). Given any such X with |X| = k, we defineWX to be the m × k matrix consisting
of the k columns of W indexed by X. We will consider the k × k Grammian (and therefore symmetric and
non-negative definite) matrix

W
T
XWX = I +DX.

Our strategy will be to bound both ‖DX‖1 and ‖DX‖∞ in the hope of applying Gerschgorin’s theorem.

Each off diagonal entry (DX)i, j , i , j, is the inner product ofW’s xi and x j columns. Thus, we have

(DS)i, j =
M·,i · M·, j√
‖M·,i‖1‖M·, j‖1

≤
α
K

sinceM is (K, α)-coherent. The end result is that both ‖DX‖1 and ‖DX‖∞ are at most (k−1)·α
K . Applying Ger-

schgorin’s disk theorem we immediately see that the largest and smallest possible singular values ofWX are√
1 +

(k−1)·α
K and

√
1 − (k−1)·α

K , respectively. The result follows.

4. Note that we can considerM to be the adjacency matrix of a bipartite graph, G = (A,B,E), with |A| = N and
|B| = m. Each element of A will have degree at least K. Furthermore, for any X ⊂ A with |X| ≤ k we can see
that the set of neighbors of X will have

|N(X)| ≥
|X|−1∑
j=0

(K − jα) ≥ |X| · K ·
(
1 −

α(|X| − 1)
2K

)
.

Hence,M is the adjacency matrix of a (k,K, (k − 1)α/2K)-unbalanced expander graph. The result now follows
from the proof of Theorem 1 in [2].

Finally, the proof of parts 5 and 6 follow from Lemma 1 and the subsequent discussion in Section 3.1, respectively. 2

Recall that explicit constructions of (K, α)-coherent matrices exist [16, 27]. It is worth noting that RIP2 matrix
constructions based on these (K, α)-coherent matrices are optimal in the sense that any RIP2 matrix with binary entries
must have a similar number of rows [10]. More interestingly, Theorem 4 formally demonstrates that (K, α)-coherent
matrices satisfy all the Fourier design requirements in Section 1.1 other than the first one regarding small Fourier
sampling requirements. In the sections below we will consider an optimized number theoretic construction for (K, α)-
coherent matrices along the lines of the construction implicitly utilized in [27, 26]. As we shall demonstrate, these
constructions have small Fourier sampling requirements. Hence, they will satisfy all four desired Fourier design
requirements.

4 A (K, α)-Coherent Matrix Construction
Let FN denote the N ×N unitary discrete Fourier transform matrix,

(FN)i, j =
e
−2πi·i· j

N

√
N
.

Recall that we want an m × N matrixM with the property thatMFN contains nonzero values in as few columns as
possible. In addition, we wantM to be a binary (K, α)-coherent matrix so that we can utilize the sublinear-time ap-
proximation technique provided by Theorem 4. It appears to be difficult to achieve both of these goals simultaneously
as stated. Hence, we will instead optimize a construction recently utilized in [26] which solves a trivial variant of this
problem.

Let Ñ,N ∈ N with Ñ > N. We will say that an m × Ñ matrix, M̃, is (K, α)N-coherent if the m ×N submatrix of
M̃ formed by its first N columns is (K, α)-coherent. In what follows we will consider ourselves to be working with
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(K, α)N-coherent matrices whose first N rows match a given m × N (K, α)-coherent matrix,M, of interest. Note that
this slight generalization will not meaningfully change anything previously discussed. For example, we may apply
Theorem 4 to the submatrix formed by the first N columns of any given (K, α)N-coherent matrix, M̃, thereby effec-
tively applying Theorem 4 to M̃ in the context of approximating vectors belonging to a fixed N-dimensional subspace
ofCÑ. The last Ñ −N columns of any (K, α)N-coherent matrix M̃ will be entirely ignored throughout this paper with
one exception: We will hereafter consider it sufficient to guarantee that M̃FÑ (as opposed toMFN) contains nonzero
values in as few columns as possible. This modification will not alter the sparse Fourier approximation guarantees (i.e.,
see Equation (1)) obtainable via Theorem 4 in any way when the functions being approximated are N-bandlimited.
However, allowing Ñ to be greater than N will help us obtain small Fourier sampling requirements.

Let M̃ be an m × Ñ (K, α)N-coherent matrix. It is useful to note that the column sparsity we desire in M̃FÑ is
closely related to the discrete uncertainty principles previously considered in [17].

Theorem 5. (See [17]). Suppose ~y ∈ CÑ contains Ñt nonzero entries, while ŷ = ~y T
FÑ contains Ñω nonzero entries.

Then, ÑtÑω ≥ Ñ. Furthermore, ÑtÑω = Ñ holds if and only if ~y is a scalar multiple of a cyclic permutation of the
picket fence sequence in CÑ containing v equally-spaced nonzero elements

(IIIv)u =

{
1 if u ≡ 0 mod Ñ

v
0 otherwise

,

where v ∈ N divides Ñ.

We will build m × Ñ (K, α)N-coherent matrices,M, below whose rows are each a permuted binary picket fence
sequence. In this case Theorem 5 can be used to bound the number of columns of M̃FÑ which contain nonzero
entries. This, in turn, will bound the number of function samples required in order to approximate a given periodic
bandlimited function.

We create an m × Ñ (K, α)N-coherent matrixM as follows: Choose K pairwise relatively primes integers

s1 < · · · < sK

and let Ñ =
∏K

j=1 s j > N. Next, we produce a picket fence row, r j,h, for each j ∈ [1,K]∩N and h ∈ [0, s j)∩Z. Thus,
the nth entry of each row r j,h is given by

(r j,h)n = δ
(
(n − h) mod s j

)
=

{
1 if n ≡ h mod s j
0 otherwise , (3)

where n ∈ [0, Ñ) ∩ Z. We then formM by setting

M =



r1,0
r1,1
...
r1,s1−1
r2,0
...
r2,s2−1
...
rK,sK−1



. (4)

For an example measurement matrix see Figure 1.

Lemma 2. An m × Ñ matrixM as constructed in Equation (4) will be (K, blogs1
Nc)N-coherent with m =

∑K
j=1 s j.
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—————————————————————————

n ∈ [0, Ñ) 0 1 2 3 4 5 6 . . .

n ≡ 0 (mod 2)
n ≡ 1 (mod 2)
n ≡ 0 (mod 3)
n ≡ 1 (mod 3)
n ≡ 2 (mod 3)
...

n ≡ 1 (mod 5)
...



1 0 1 0 1 0 1 . . .
0 1 0 1 0 1 0 . . .
1 0 0 1 0 0 1 . . .
0 1 0 0 1 0 0 . . .
0 0 1 0 0 1 0 . . .

...
0 1 0 0 0 0 1 . . .

...


Figure 1: Measurement Matrix,M, Using s1 = 2, s2 = 3, s3 = 5, . . .

—————————————————————————

Proof: Choose any two distinct integers, l , n, from [0,N). LetM·,l andM·,n denote the lth and nth columns ofM,
respectively. The inner product of these columns is

M·,l · M·,n =

K∑
j=1

δ
(
(n − l) mod s j

)
.

The sum above is at most the maximum α for which
∏α

j=1 s j ≤ N by the Chinese Remainder Theorem. Furthermore,
this value is itself bounded above by blogs1

Nc. The equation for m immediately follows from the construction ofM
above. 2

The following Lemma is a consequence of Theorem 5.

Lemma 3. LetM be an m × Ñ matrix as constructed in Equation (4). Then,MFÑ will contain nonzero entries in
exactly m − K + 1 =

(∑K
j=1 s j

)
− K + 1 columns.

Proof: Fix j ∈ [1,K] ∩N. Each picket fence row, r j,h ∈ {0, 1}Ñ, contains Ñ/s j ones. Thus, rT
j,hFÑ contains s j nonzero

entries for all h ∈ [0, s j) ∩ Z. Furthermore, rT
j,hFÑ contains nonzero values in the same entries for all h ∈ [0, s j) ∩ Z

since all r j,h rows (with j fixed) are cyclic permutations of one another. Finally, let l, j ∈ [1,K] ∩ N with j , l and
suppose that rT

j,hFÑ and rT
l,gFÑ both have nonzero values in the same entry. This can only happen if

h
Ñ
s j

= g
Ñ
sl

for a pair of integers 0 ≤ h < s j and 0 ≤ g < sl. However, since s j and sl are relatively prime, Euclid’s lemma implies
that this can only happen when h = g = 0. The result follows. 2

We can now see that matrix construction presented in this section satisfies all four of our Fourier design require-
ments. In the next sections we will consider methods for optimizing the relatively prime integer values, s1, . . . , sK,
used to construct our (K, α)N-coherent matrices. In what follows we will drop the slight distinction between (K, α)N-
coherent and (K, α)-coherent matrices for ease of discussion.
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—————————————————————————

Minimize

m =

Kα=dDαe∑
j=1

s j (5)

subject to the following constraints:

I. s1 < · · · < sK.

II.
∏α

j=1 s j < N ≤
∏α+1

j=1 s j.

III. s1, · · · , sK are pairwise relatively prime.

—————————————————————————

Figure 2: Matrix Design Optimization Problem for Given N, D, and α values

5 Optimizing the (K, α)-Coherent Matrix Construction
Note that K appears as part of a ratio involving α in each statement of Theorem 4. Hence, we will focus on constructing
(K, α)-coherent matrices in which K is a constant multiple of α in this section. For a given value of D ∈ (1,∞) we
can optimize the Section 4 methods for constructing a (Dα, α)-coherent matrix with a small number of rows by
reformulating the matrix design problem as an optimization problem (see Figure 2). In this section we will develop
concrete bounds for the number of rows, m as a function of D, N, and α, that will appear in any m ×N (K = Dα, α)-
coherent matrix constructed as per Section 4. These bounds will ultimately allow us to cast the matrix optimization
problem in Figure 2 as a linear integer program in Section 6.

The following trivial fact will be useful below.

Lemma 4. Let x1, x2, . . . , xn ∈ [2,∞) be such that xn ≥ xn−1 ≥ · · · ≥ x1 ≥ 2. Then,
∑n

j=1 x j ≤
∏n

j=1 x j.

Proof: This follows immediately from the fact that

1 +

∑n−1
j=1 x j

xn
≤ n ≤ 2n−1

≤

n−1∏
j=1

x j. 2

Define p0 = 1 and let pl be the lth prime natural number. Thus, we have

p0 = 1, p1 = 2, p2 = 3, p3 = 5, p4 = 7, . . . (6)

Suppose that S = {s1, . . . , sK} is a solution to the optimization problem presented in Figure 2 for given values of α, D,
and N. Let pqS be the largest prime factor appearing in any element of S. Finally, let

q = max
{
qS

∣∣∣ S solves the optimization problem in Figure 2
}
.

The following lemma bounds q as a function of N, D, and α.

Lemma 5. Suppose s1, s2, · · · , sK satisfy all three constraints in Figure 2. Set m̃ =
∑K

j=1 s j. Next, let pt be the smallest
prime number greater than 2 for which

pt · (K − α − 1) + (K − α − 1) (K − α − 2) + (α + 1) N
1
α+1 > m̃

holds. Then, q < t + K − α − 1.
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Proof:

Let s′1, s
′

2, · · · , s
′

K be a solution to the optimization problem presented in Figure 2. Set m =
∑K

j=1 s′j. Note that there
must exist at least one prime, pl̃ ∈ [pt, pt+K−α−1), which is not a prime factor of any s′j value. If no such prime exists,
then Lemma 4 applied to the prime factors of each s′j containing one of the primes in [pt, pt+K−α−1) tells us that the
sum of s′1, s

′

2, · · · , s
′

K must be

m ≥
K−α−2∑

j=0

pt+ j +

α+1∑
j=1

s′j.

The second constraint in Figure 2 together with the arithmetic-geometric mean inequality tells that we must always
have

(α + 1) N
1
α+1 ≤ (α + 1) ·

α+1∏
j=1

s′j


1
α+1

≤

α+1∑
j=1

s′j. (7)

Furthermore, it is not difficult to see that

K−α−2∑
j=0

pt+ j ≥

K−α−2∑
j=0

(
pt + 2 j

)
≥ pt · (K − α − 1) + (K − α − 1) (K − α − 2) (8)

since pt > 2. Thus, if every prime in [pt, pt+K−α−1) appears as a prime factor in some s′j, then

m ≥ pt · (K − α − 1) + (K − α − 1) (K − α − 2) + (α + 1) N
1
α+1 > m̃,

violating our assumption concerning the optimality of s′1, s
′

2, · · · , s
′

K. This proves our claim regarding the existence of
at least one prime, pl̃ ∈ [pt, pt+K−α−1), which is not a prime factor of any s′j value.

Now suppose that some s′j′ contains a prime factor, pl′ , with l′ ≥ t + K − α − 1. Substitute the largest currently
unused prime, pl̃ ∈ [pt, pt+K−α−1), for pl′ in the prime factorization of s′j′ to obtain a smaller value, s′

j̃
. If we can

show that s′1, s
′

2, · · · , s
′

K with s′
j̃

substituted for s′j′ still satisfies all three Figure 2 constraints after reordering, we will
again have a contradiction to the assumed minimality of our original solution. In fact, it is not difficult to see that all
constraints other than II above will trivially be satisfied by construction. Furthermore, if s′

j̃
> s′α+1, then Constraint II

will also remain satisfied and we will violate our assumption that the s′j values originally had a minimal sum.
Finally, the second case where pt ≤ pl̃ ≤ s′

j̃
< s′α+1 could only occur if originally

K∑
j=α+2

s′j ≥
K−α−1∑

j=1

(
pt + 2 j

)
= pt · (K − α − 1) + (K − α) (K − α − 1) . (9)

When combined with Equation (7) above, Equation (9) reveals that if s′
j̃
< s′α+1 then we must have originally had

K∑
j=1

s′j ≥ (α + 1) N
1
α+1 + pt · (K − α − 1) + (K − α) (K − α − 1) > m̃.

However, in this case the assumed minimality of s′1, s
′

2, . . . , s
′

K would again have been violated. 2

We will now establish a slightly more refined result than that of Lemma 5.
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Lemma 6. Suppose s1, s2, · · · , sK satisfy all three constraints in Figure 2. Set m̃ =
∑K

j=1 s j. Let L =
∏v

i=1 pi for any
desired v ∈N, and let φ(L) =

∏v
i=1(pi − 1). Next, let pt be the smallest prime number greater than 2 for which

pt · (K − α − 1) + (K − α − 1) (K − α − 2) +

(
L − 2φ(L) − 2v

)
(φ(L) + v)

⌊
K−α−2
φ(L)+v

⌋(⌊
K−α−2
φ(L)+v

⌋
− 1

)
2

+
(
L − 2φ(L) − 2v

) ⌊K − α − 2
φ(L) + v

⌋ (
K − α − 1 − (φ(L) + v)

⌊
K − α − 2
φ(L) + v

⌋)
+ (α + 1) N

1
α+1 > m̃

holds. Then, q < t + K − α − 1.

Proof:

We will prove this lemma by modifying our proof of Lemma 5. In particular, we will modify formulas (8) and
(9). Note that amongst any L consecutive numbers, there are at most φ(L) + v prime numbers. Hence, we have that
pi+w(φ(L)+v) ≥ pi + wL for all w ∈ N. Thus, we may replace formula (8) with

K−α−2∑
j=0

pt+ j ≥

K−α−2∑
j=0

(
pt+ j−(φ(L)+v)

⌊ j
φ(L)+v

⌋ + L
⌊

j
φ(L) + v

⌋)

≥

K−α−2∑
j=0

(
pt + 2

(
j − (φ(L) + v)

⌊
j

φ(L) + v

⌋)
+ L

⌊
j

φ(L) + v

⌋)

=

K−α−2∑
j=0

(
pt + 2 j +

(
L − 2φ(L) − 2v

) ⌊ j
φ(L) + v

⌋)

= pt · (K − α − 1) + (K − α − 1) (K − α − 2) +
(
L − 2φ(L) − 2v

) K−α−2∑
j=0

⌊
j

φ(L) + v

⌋

= pt · (K − α − 1) + (K − α − 1) (K − α − 2) +

(
L − 2φ(L) − 2v

)
(φ(L) + v)

⌊
K−α−2
φ(L)+v

⌋(⌊
K−α−2
φ(L)+v

⌋
− 1

)
2

+
(
L − 2φ(L) − 2v

) ⌊K − α − 2
φ(L) + v

⌋ (
K − α − 1 − (φ(L) + v)

⌊
K − α − 2
φ(L) + v

⌋)
.

Note that amongst any L consecutive numbers, a maximal subset of pairwise relatively prime numbers has at most
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φ(L) + v numbers. Hence, we may also replace formula (9) by a similar argument to above with

K∑
j=α+2

s′j =

K−α−2∑
j=0

s′α+2+ j

≥

K−α−2∑
j=0

(
s′
α+2+ j−(φ(L)+v)

⌊ j
φ(L)+v

⌋ + L
⌊

j
φ(L) + v

⌋)

≥

K−α−2∑
j=0

(
pt + 2

(
1 + j − (φ(L) + v)

⌊
j

φ(L) + v

⌋)
+ L

⌊
j

φ(L) + v

⌋)

=

K−α−2∑
j=0

(
pt + 2(1 + j) +

(
L − 2φ(L) − 2v

) ⌊ j
φ(L) + v

⌋)

= pt · (K − α − 1) + (K − α) (K − α − 1) +
(
L − 2φ(L) − 2v

) K−α−2∑
j=0

⌊
j

φ(L) + v

⌋

= pt · (K − α − 1) + (K − α) (K − α − 1) +

(
L − 2φ(L) − 2v

)
(φ(L) + v)

⌊
K−α−2
φ(L)+v

⌋(⌊
K−α−2
φ(L)+v

⌋
− 1

)
2

+
(
L − 2φ(L) − 2v

) ⌊K − α − 2
φ(L) + v

⌋ (
K − α − 1 − (φ(L) + v)

⌊
K − α − 2
φ(L) + v

⌋)
.

By replacing (8) and (9) with these bounds in the proof of Lemma 5, we obtain the desired result. 2

The following corollary of Lemma 5 provides a simple initial upper bound on the largest prime factor that may
appear in any solution to the optimization problem presented in Figure 2.

Corollary 7. Let r be such that
∏α

j=1 pr+ j < N ≤
∏α+1

j=1 pr+ j, and set m̃ =
∑K

j=1 pr+ j. Next, let pt be the smallest prime
larger than 2 for which

pt · (K − α − 1) + (K − α − 1) (K − α − 2) + (α + 1) N
1
α+1 > m̃

holds. Then, q < t + K − α − 1.

Proof:

It is not difficult to see that
s1 = pr+1, s2 = pr+2, · · · , sK = pr+K (10)

collectively satisfy all three constraints in Figure 2. Applying Lemma 5 yields the stated result. 2

Similarly, one can obtain the following corollary from Lemma 6.

Corollary 8. Let r be such that
∏α

j=1 pr+ j < N ≤
∏α+1

j=1 pr+ j, and set m̃ =
∑K

j=1 pr+ j. Let L =
∏v

i=1 pi for any v ∈ N,
and let φ(L) =

∏v
i=1(pi − 1). Next, let pt be the smallest prime larger than 2 for which

pt · (K − α − 1) + (K − α − 1) (K − α − 2) +

(
L − 2φ(L) − 2v

)
(φ(L) + v)

⌊
K−α−2
φ(L)+v

⌋(⌊
K−α−2
φ(L)+v

⌋
− 1

)
2

+
(
L − 2φ(L) − 2v

) ⌊K − α − 2
φ(L) + v

⌋ (
K − α − 1 − (φ(L) + v)

⌊
K − α − 2
φ(L) + v

⌋)
+ (α + 1) N

1
α+1 > m̃

holds. Then, q < t + K − α − 1.
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The following lemma provides upper and lower bounds for the members of any valid solution to the optimization
problem in Figure 2 as functions of N, D, and α. This lemma is critical to the formulation of the optimization problem
in Figure 2 as a linear integer program in Section 6.

Lemma 9. The following bounds hold for any valid solution, S = {s1, s2, . . . , sK}, to the optimization problem in
Figure 2:

1. s1 < · · · < sK.

2. s1 ≥ 2, s2 ≥ 3, . . . , sK ≥ pK.

3. s1 < N
1
α and sα+1 > N

1
α+1 .

4. Let t ∈ N be defined as in Lemma 5, Lemma 6, Corollary 7, or Corollary 8. Then, sK < pt+K−α−1.

Proof:

Assertion (1) is a restatement of Constraint I in Figure 2. The second assertion follows immediately from the fact
that the ordered s j values must be pairwise relatively prime (i.e., Constraint III). The third assertion follows easily from
Constraint II. Assertion (4) follows from an argument analogous to the proof of Lemma 5. That is, if sK ≥ pt+K−α−1,
then we may substitute sK with the largest prime in [pt, pt+K−α−1) which is not currently a prime factor of s1, . . . , sK
and thereby derive a contradiction. 2

The following lemmas provide concrete lower bound for m in terms of N, D, and α (see Equation (5) in Figure 2).
These lemmas will ultimately allow us to judge the possible performance of any solution to our optimization problem
based solely on the value of α whenever N and D are fixed.

Lemma 10. Any solution to the optimization problem in Figure 2 must have

m ≥ KN
1
α+1 + (K − α) (K − α − 1) .

Proof:

We know that sα+2 > sα+1 > N
1
α+1 from Lemma 9. Hence, we can see that

K∑
j=α+2

s j ≥

K−α−1∑
j=1

(
N

1
α+1 + 2 j

)
≥ (K − α − 1) N

1
α+1 + (K − α) (K − α − 1) .

Combining this lower bound with Equation (7) proves the lemma. 2

Corollary 11. Let L =
∏v

i=1 pi for any desired v ∈ N, and let φ(L) =
∏v

i=1(pi − 1). Any solution to the optimization
problem in Figure 2 must have

m > KN
1
α+1 + (K − α) (K − α − 1) +

(
L − 2φ(L) − 2v

)
(φ(L) + v)

⌊
K−α−2
φ(L)+v

⌋(⌊
K−α−2
φ(L)+v

⌋
− 1

)
2

+
(
L − 2φ(L) − 2v

) ⌊K − α − 2
φ(L) + v

⌋ (
K − α − 1 − (φ(L) + v)

⌊
K − α − 2
φ(L) + v

⌋)
.
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Proof:

Note that amongst any L consecutive integers, a maximal subset of pairwise relatively prime numbers has at most
φ(L) + v numbers. As in the proof of Lemma 10, this corollary follows by combining Equation (7) with the fact that

K∑
j=α+2

s j =

K−α−2∑
j=0

sα+2+ j

≥

K−α−2∑
j=0

(
s
α+2+ j−(φ(L)+v)

⌊ j
φ(L)+v

⌋ + L
⌊

j
φ(L) + v

⌋)

≥

K−α−2∑
j=0

(
sα+1 + 2

(
1 + j − (φ(L) + v)

⌊
j

φ(L) + v

⌋)
+ L

⌊
j

φ(L) + v

⌋)

>
K−α−2∑

j=0

(
N

1
α+1 + 2(1 + j) +

(
L − 2φ(L) − 2v

) ⌊ j
φ(L) + v

⌋)

= N
1
α+1 · (K − α − 1) + (K − α) (K − α − 1) +

(
L − 2φ(L) − 2v

) K−α−2∑
j=0

⌊
j

φ(L) + v

⌋

= N
1
α+1 · (K − α − 1) + (K − α) (K − α − 1) +

(
L − 2φ(L) − 2v

)
(φ(L) + v)

⌊
K−α−2
φ(L)+v

⌋(⌊
K−α−2
φ(L)+v

⌋
− 1

)
2

+
(
L − 2φ(L) − 2v

) ⌊K − α − 2
φ(L) + v

⌋ (
K − α − 1 − (φ(L) + v)

⌊
K − α − 2
φ(L) + v

⌋)
. 2

In the next section we investigate asymptotic bounds of m in terms of D and N. This will, among other things,
allow us to judge the quality of our matrices with respect to the lower bound in part 6 of Theorem 4.

5.1 Asymptotic Upper and Lower Bounds
We begin this section by proving an asymptotic lower bound for the number of rows in any (K, α)-coherent matrix
created as per Section 4. Recall that we have fixed K to be multiple of α so that K = Kα = dDαe for some D ∈ (1,∞).
We have the following lower bound for m as a function of D and N.

Lemma 12. Suppose that 2 ≤ D ≤ N1−τ, where τ > 0 is some fixed constant. For any solution to the optimization
problem in Figure 2, where α can freely be chosen, one has

m�
D2(log N)2

log(D log N)

for sufficiently large values of D log N.

Proof:

Let Q = D log N. Suppose that S = {s1, . . . sK} is a solution to the optimization problem in Figure 2, where α can
be freely chosen and K = Kα = dDαe. By Properties (I) and (II) in Figure 2,

K∑
i=1

log si >
⌊ Dα
α + 1

⌋
log N ≥

Q
4
.
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Let q = qS be the largest natural number such that pq |
∏K

i=1 si. For 1 ≤ i ≤ q, let wi be the integer such that
pwi

i ‖
∏K

i=1 si. Since a + b ≤ ab for a, b ∈N, it follows from Lemma 13 that

q∑
i=1

pwi
i ≤

K∑
i=1

si �
Q2

log Q

as Q → ∞. This implies that for 1 ≤ i ≤ q, we have pwi
i ≤

CQ2

log Q , where C is some absolute positive constant.
Therefore, ∑

pi≤

√
CQ2
log Q

wi log pi ≤

∞∑
w=2

∑
p≤

(
CQ2
log Q

)1/w

w log p�
∑

2≤w≤ log(CQ2)−log log Q
log 2

wQ2/w

(log Q)1/w �
Q√

log Q
.

Since
∑q

i=1 wi log pi =
∑K

i=1 log si ≥
Q
4 , we have that∑

pi>
√

CQ2
log Q

wi log pi � Q

for sufficiently large values of Q. Let
W =

∑
pi>

√
CQ2
log Q

wi.

We have that wi ∈ {0, 1} when pi >
√

CQ2

log Q . Also, whenever wi ≥ 1, it follows that log pi ≤ log CQ2

log Q � log Q. Thus,

for sufficiently large values of Q, we have W ≥
C′Q

log Q , where C′ is some absolute positive constant. By the Prime
Number Theorem,

K∑
i=1

si ≥

q∑
i=1

pwi
i ≥

∑
i≤ C′Q

log Q

pi �
∑

i≤ C′Q
log Q

i log i�
Q2

log Q
=

D2(log N)2

log(D log N)

for sufficiently large values of Q = D log N. 2

Part 6 of Theorem 4 informs us that m must be Ω
(
D2 logD N

)
for any m ×N (K = dDαe, α)-coherent matrix. On

the other hand, Lemma 12 above tells that the any m ×N (K, α)-coherent matrix constructed via Section 4 must have

m = Ω
(

D2(log N)2

log(D log N)

)
. Note that the lower bounds for matrices constructed as per Section 4 are worse by approximately

a factor of log N. This is probably an indication that the (K = dDαe, α)-coherent matrix construction in Section 4 is
suboptimal. Certainly suboptimality of the construction in Section 4 would not be surprising given that the construction
is addressing a more constrained design problem (i.e., we demand small Fourier sampling requirements).

Next we show that the asymptotically best main term for m in the optimization problem in Figure 2 can be obtained
by taking each s j to be a prime. This proves that the asymptotic lower bound given in Lemma 12 is tight.

Lemma 13. Suppose that 2 ≤ D ≤ N1−τ, where τ > 0 is some fixed constant. If we are able to select the value for α,
the optimization problem in Figure 2 can be solved by taking the s j to be primes in such a way that guarantees that

m�
D2(log N)2

log(D log N)

as D log N→∞.

17



Proof:

Let Q = D log N. Since we restrict to the case that 1 ≤ D ≤ N1−τ, it follows that as Q → ∞, we also have that
N→∞. Let r = max

(⌈
Q

log Q

⌉
, 9

)
. Note that log r > 2. Also, by the Prime Number Theorem, pr+1 ∼ Q ≤ N1−τ log N

as Q → ∞. We will assume that Q is large enough that pr+1 < N. Choose α ∈ N such that
∏α

j=1 pr+ j < N ≤∏α+1
j=1 pr+ j. For 1 ≤ i ≤ Kα = dDαe, let si = pr+i. Note that our elements si already satisfy the conditions in Figure 2.

We are left to establish a bound on α and then estimate
∑Kα

i=1 si.

Note that α ≤ β whenever
∏β+1

j=1 pr+ j ≥ N, which is equivalent to
∑β+1

j=1 log pr+ j ≥ log N. Let β =
⌈ 2 log N

log r

⌉
. We

have that pk ≥ k for k ≥ 1. Hence, we have that

β+1∑
i=1

log pr+i ≥

β+1∑
i=1

log(r + i)

≥

∫ r+β+1

r
log x dx

= (r + β + 1) log(r + β + 1) − (r + β + 1) − r log r + r

= (β + 1)(log(r + β + 1) − 1) + r log
(
1 +

β + 1
r

)
> (β + 1)(log(r + β + 1) − 1)
> β(log r − 1)

>
2 log N

log r
·

log r
2

= log N.

Note that as Q→∞, r + Kβ �
Q

log Q . Thus, since α ≤ β, we have by [28, Lemma 6] and the Prime Number Theorem
that

Kα∑
i=1

pr+i ≤

Kβ∑
i=1

pr+i ≤ C1

p2
r+Kβ

log pr+Kβ
≤ C2

(
(r + Kβ) log(r + Kβ)

)2

log
(
(r + Kβ) log(r + Kβ)

) ,
for some absolute constants C1 and C2. As Q→∞,

m�

(
(r + Kβ) log(r + Kβ)

)2

log
(
(r + Kβ) log(r + Kβ)

) � Q2

log Q
=

D2(log N)2

log(D log N)
. 2

Although Lemma 13 shows that simply using primes for our s j values is asymptotically optimal, it is important
to note that the convergence of such primes-only solutions to the optimal value as D log N → ∞ is likely very slow.
For real world values of N and D the more general criteria that the s j values be pairwise relatively prime can produce
significantly smaller m values. This is demonstrated empirically in Section 7. However, Lemma 13 also formally
justifies the idea that the s j values can be restricted to smaller subsets of relatively prime integers (e.g., the prime
numbers) before solving the optimization problem in Figure 2 without changing the asymptotic performance of the
generated solutions. This idea can help make the (approximate) solution of the optimization problem in Figure 2 more
computationally tractable in practice.

6 Formulation of the Matrix Design Problem as a Linear Integer Program
To formulate the problem as a linear integer program, we define K = Kα = dDαe and B = pt+K−α−1 as in Part 4 of

Lemma 9. Let s j,i ∈ {0, 1} for j ∈ [1,K]∩N and i ∈ [1,B]∩N. We then let s j =

B∑
i=1

s j,i·i and, for k ∈ [1, t+K−α−1]∩N,
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define

δk,i =

{
1 if pk | i
0 otherwise . (11)

Then, for a given α, we can minimize Equation (5) by minimizing

m =

K∑
j=1

s j =

K∑
j=1

B∑
i=1

s j,i · i (12)

subject to the following linear constraints:

1.
∑B

i=1 s j,i = 1 for all j ∈ [1,K] ∩N.

2. s j,i ∈ {0, 1} for all j ∈ [1,K] ∩N and i ∈ [1,B] ∩N.

3.
∑B

i=1(i · s j+1,i − i · s j,i) ≥ 1 for all j ∈ [1,K − 1] ∩N.

4.
∑α

j=1
∑B

i=1 s j,i · ln i < ln N ≤
∑α+1

j=1
∑B

i=1 s j,i · ln i.

5. s j,i = 0 for all j ∈ [1,K] ∩N and i ∈ [1, pi − 1] ∩N.

6.
∑K

j=1
∑B

i=1 δk,i · s j,i ≤ 1 for all k ∈ [1, t + K − α − 1] ∩N.

The first and second constraint together state that for each j, s j,i is non-zero for exactly one value of i ∈ [1,B]∩N,
implying that s j = i. This in turn, by the third constraint, implies that s1 < s2 < · · · < sK, which is Constraint I in
Figure 2. Upon applying the natural logarithm in Constraint II in Figure 2 to convert a nonlinear constraint to a linear
constraint, one obtains something equivalent to our fourth constraint above. The fifth constraint above simply forces
s j ≥ p j, which will be true for any solution to the optimization problem in Figure 2. The last constraint ensures that
s1, . . . , sK are pairwise relatively prime, which is Constraint III in Figure 2. Hence, the optimization problem in this
section is equivalent to the optimization problem in Figure 2.

7 Numerical Experiments
In this section we investigate the optimal Fourier sampling requirements related to m × N (K = dDαe , α)-coherent
matrices, optimized over the α parameter, for several values of D and N. This is done for given values of D ∈ (1,∞)
and N ∈ N by solving the optimization problem in Figure 2 via the linear integer program presented in Section 6 for
all feasible values of α ∈

[
1, log2 N

]
∩N.5 The solution yielding the smallest Fourier sampling requirement, m−Kα+1

from Lemma 3, for the given D and N values (minimized over all α values) is the one reported for experiments in
this section. Each linear integer program was solved with IBM ILOG OPL-CPLEX with parameters generated using
Microsoft Visual Studio. Examples of the actual files ran can be downloaded from the contact author’s website.6

In order to make our numerical experiments more meaningful we computed optimal incoherent matrices which
also have the RIP2 (see part 3 of Theorem 4). Hence, we set D = k−1

ε for a given sparsity value k ∈ [1,N] ∩N and
ε ∈ (0, 1). In all experiments the value of ε was fixed to be slightly less than 3/

(
4 +
√

6
)
≈ 0.465 which ensures

that l1-minimization can be utilized with the produced RIP2 matrices for accurate Fourier approximation (e.g., see
Theorem 2.7 in [35]).

Three variants of the optimization problem in Figure 2 were solved in order to determine the minimal Fourier
sampling requirements associated with various classes of

(⌈
(k−1)α
ε

⌉
, α

)
-coherent matrices created via Section 4. These

three variants include the:
5It is important to note that many values of α can be disqualified as optimal without solving a linear integer program by comparing previous

solutions to the lower bounds given in Lemma 10 and Corollary 11.
6http://www.math.duke.edu/∼markiwen/DukePage/code.htm
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Figure 3: On the Left: The minimal Fourier sampling requirements, m − Kα + 1 minimized over all feasible α ∈
[1, 14] ∩N, for any possible m × 214

(
K =

⌈
(k−1)α
ε

⌉
, α

)
-coherent matrix constructed via Section 4. Here ε was fixed

to be 4/
(
6 +
√

7
)
≈ 0.463, and the sparsity parameter, k, was varied between 2 and 11. On the Right: The minimal

Fourier sampling requirements, m − Kα + 1 minimized over all feasible α ∈ [1, 22] ∩ N, for any possible m × 222(
K =

⌈
(k−1)α
ε

⌉
, α

)
-coherent matrix constructed via Section 4. Here ε was again fixed to be 4/

(
6 +
√

7
)
≈ 0.463, and

the sparsity parameter, k, was varied between 2 and 19.

1. Relatively Prime optimization problem exactly as stated in Figure 2 and reformulated in Section 6.

2. Powers of Primes optimization problem. Here the s j values are further restricted to each be a power of a single
prime number.

3. Primes optimization problem. Here each s j value is further restricted to simply be a prime number.

These different variants allow some trade off between computational complexity and the minimality of the generated
incoherent matrices. See Figure 3 for a comparison of the solutions to these optimization problems for two example
values of N.

In creating the solutions graphed in Figure 3 computer memory was the primary constraining factor. For each
of the two values of N the sparsity, k, was increased until computer memory began to run out during the solution of
one of the required linear integer programs.7 All linear integer programs which ran to completion did so in less than
90 minutes (most finishing in a few minutes or less). Not surprisingly, the relatively prime solutions always produce
smaller Fourier sampling requirements than the more restricted powers of primes solutions, with the tradeoff being
that they are generally more difficult to solve. Similarly, the powers of primes solutions always led to smaller Fourier
sampling requirements than the even more restricted primes solutions.

For the sake of comparison, the left plot in Figure 3 also includes Fourier sampling results for RIP2(214,k,ε < 0.465)
matrices created via random sampling based incoherence arguments for each sparsity value. These random Fourier
sampling requirements were calculated by choosing rows from an 214

× 214 inverse DFT matrix, F −1, uniformly at
random without replacement. After each row was selected, the µ-coherence of the submatrix formed by the currently
selected rows was calculated (see Definition 3). As soon as the coherence became small enough that Theorem 3
guaranteed that the matrix would have the RIP2(214,k,ε < 0.465) for the given value of k, the total number of inverse
DFT rows selected up to that point was recored as a trial Fourier sampling value. This entire process was repeated 100
times for each value of k. The smallest Fourier sampling value achieved out of these 100 trials was then reported for
each sparsity k in the left plot of Figure 3.

Looking at the plot of the left in Figure 3 we can see that the randomly selected submatrices guaranteed to have
the RIP2 require fewer Fourier samples than the deterministic matrices constructed herein. Hence, if Fourier sampling
complexity is one’s primary concern, traditional matrix design techniques should be utilized. However, it is important
to note that such randomly constructed Fourier matrices cannot currently be utilized in combination with o(N)-time

7A modest desktop computer with an Intel Core i7-920 processor @ 2.67 Ghz and 2.99 GB of RAM was used to solve all linear integer programs
reported on in Figure 3.
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Fourier approximation algorithms. Our deterministic incoherent matrices, on the other hand, have associated sublinear-
time approximation algorithms (see the first part of Theorem 4).

Finally, we conclude this paper by noting that heuristic solutions methods can almost certainly be developed for
solving the optimization problem in Figure 2. Such methods are often successful at decreasing memory usage and
computation time while still producing near-optimal results. We leave further consideration of such approaches as
future work.
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A Proof of the First Statement in Theorem 4
We will prove a slightly more general variant of the first statement given in Theorem 4. Below we will work with
(K, cmin, α)-coherent matrices.

Definition 6. Let K ∈ [1,N] ∩ N and cmin, α ∈ R+. An m × N positive real matrix, M ∈ [0,∞)m×N, is called
(K, cmin, α)-coherent if both of the following properties hold:

1. Every column ofM contains at least K nonzero entries.

2. All nonzero entries are at least as large as cmin.

3. For all j, l ∈ [0,N) with j , l, the associated columns,M·, j andM·,l ∈ [0,∞)m, haveM·, j · M·,l ≤ α.

Clearly, any (K, α)-coherent matrix will also be (K, 1, α)-coherent. Other examples of (K, cmin, α)-coherent matrices
include “corrupted” or “noisy” (K, α)-coherent matrices, as well as matrices whose columns are spherical code words
from the first orthant of Rm. In what follows we will generalize results and constructions from [26]. We will give
self-contained proofs whenever possible, although it will be necessary on occasion to state generalized results from
[26] whose proofs we omit.

A.1 Some Useful Properties of (K, cmin, α)-Coherent Matrices
In what follows,M ∈ [0,∞)m×N will always refer to a given m ×N (K, cmin, α)-coherent matrix. Let n ∈ [0,N) ∩N.
We define M(K,n) to be the K × N matrix created by selecting the K rows of M with the largest entries in its nth

column. Furthermore, we defineM′(K,n) to be the K× (N−1) matrix created by deleting the nth column ofM(K,n).
Thus, if

M j1,n ≥ M j2,n ≥ . . . ≥ M jm,n

then

M(K,n) =


M j1
M j2
...
M jK

 (13)

and

M
′(K,n) =


M j1,1 M j1,2 . . . M j1,n−1 M j1,n+1 . . . M j1,N
M j2,1 M j2,2 . . . M j2,n−1 M j2,n+1 . . . M j2,N

...
M jK ,1 M jK ,2 . . . M jK ,n−1 M jK ,n+1 . . . M jK ,N

 . (14)

The following two lemmas motivate the main results of this section.

Lemma 14. SupposeM is a (K, cmin, α)-coherent matrix. Let n ∈ [0,N)∩N, k ∈
[
1,K · c2

min/α
]
∩N, and ~x ∈ CN−1.

Then, at most kα
c2

min
of the K entries ofM′(K,n) · ~x will have magnitude greater than or equal to cmin

k · ‖~x‖1.
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Proof:

We have that ∣∣∣∣∣∣
{

j
∣∣∣∣∣ ∣∣∣(M′(K,n) · ~x

)
j

∣∣∣ ≥ cmin · ‖~x‖1
k

}∣∣∣∣∣∣ ≤ k ·
∥∥∥M′(K,n) · ~x

∥∥∥
1

cmin · ‖~x‖1
≤

k
cmin

· ‖M
′(K,n)‖1.

Focusing now onM′(K,n), we can see that

‖M
′(K,n)‖1 = max

l∈[1,N−1]∩N

∥∥∥(M′(K,n))·,l
∥∥∥

1
≤ max

l∈[1,N−1]∩N

〈
(M(K,n))·,n , (M(K,n))·,l

〉
cmin

≤
α

cmin
. (15)

The result follows. 2

With Lemma 14 in hand we can now prove our second lemma. However, we must first establish some notation.
For any given ~x ∈ CN and subset S ⊆ [0,N) ∩N, we will let ~xS ∈ C

N be equal to ~x on the indexes in S and be zero
elsewhere. Thus, (

~xS
)

i =

{
xi if i ∈ S
0 otherwise .

Furthermore, for a given integer k < N, we will let Sopt
k ⊂ [0,N) ∩ N be the first k element subset of [0,N) ∩ N

in lexicographical order with the property that |xs| ≥ |xt| for all s ∈ Sopt
k and t ∈ [0,N) ∩ N − Sopt

k . Thus, Sopt
k

contains the indexes of k of the largest magnitude entries in ~x. Finally, we will define ~xopt
k to be ~xSopt

k
, an optimal

k-term approximation to ~x.

Lemma 15. SupposeM is a (K, cmin, α)-coherent matrix. Let n ∈ [0,N)∩N, k̃ ∈
[
1,K · c2

min/α
]
∩N, S ⊂ [0,N)∩N

with |S| ≤ k̃, and ~x ∈ CN−1. Then,M′(K,n) · ~x andM′(K,n) ·
(
~x − ~xS

)
will differ in at most k̃α

c2
min

of their K entries.

Proof:

Let ~1 ∈ CN−1 be the vector of all ones. We have that∣∣∣∣∣{ j
∣∣∣∣∣ (
M
′(K,n) · ~x

)
j ,

(
M
′(K,n) ·

(
~x − ~xS

))
j

}∣∣∣∣∣ =

∣∣∣∣∣{ j
∣∣∣∣∣ (
M
′(K,n) · ~xS

)
j , 0

}∣∣∣∣∣ ≤ ∣∣∣∣∣{ j
∣∣∣∣∣ (
M
′(K,n) · ~1S

)
j
≥ cmin

}∣∣∣∣∣
since all the nonzero entries of M′(K,n) are at least as large as cmin. Applying Lemma 14 with ~x = ~1S and
k =

∥∥∥~1S

∥∥∥
1

= |S| finishes the proof. 2

By combining the two Lemmas above we are able to bound the accuracy with which we can approximate any
entry of an arbitrary complex vector ~x ∈ CN using only the measurements from a (K, cmin, α)-coherent matrix. The
following lemma motivates the remainder of this appendix.

Lemma 16. SupposeM is a (K, cmin, α)-coherent matrix. Let n ∈ [0,N) ∩ N, k ∈
[
1,K · c2

min/α
]
∩ N, ε ∈ (0, 1],

c ∈ [2,∞) ∩N, and ~x ∈ CN. If K > c · (kα/c2
minε) then more than c−2

c · K of the K entries ofM(K,n) · ~x can be used

to estimate xn to within
ε
∥∥∥∥~x−~xopt

(k/ε)

∥∥∥∥
1

k accuracy.

Proof:

Define ~y ∈ CN−1 to be ~y = (x0, x1, . . . , xn−1, xn+1, . . . , xN−1). We have

M(K,n) · ~x = xn · (M(K,n))·,n +M′(K,n) · ~y.
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Applying Lemma 15 with k̃ = (k/ε) demonstrates that at most kα
ε·c2

min
entries of M′(K,n) · ~y differ from their corre-

sponding entries inM′(K,n) ·
(
~y − ~yopt

(k/ε)

)
. Of the remaining K − kα

ε·c2
min

entries ofM′(K,n) · ~y, at most kα
ε·c2

min
will have

magnitudes greater than or equal to ε · cmin

∥∥∥∥~y − ~yopt
(k/ε)

∥∥∥∥
1
/k by Lemma 14. Hence, at least

K − 2
(

kα
ε · c2

min

)
>

c − 2
c
· K

entries ofM′(K,n) · ~y will have a magnitude no greater than

ε · cmin

∥∥∥∥~y − ~yopt
(k/ε)

∥∥∥∥
1

k
≤

ε · cmin

∥∥∥∥~x − ~xopt
(k/ε)

∥∥∥∥
1

k
.

Therefore,
(M(K,n)·~x) j

(M(K,n)) j,n
will approximate xn to within the stated accurracy for more than c−2

c ·K values j ∈ [1,K]∩N. 2

Lemma 16 generalizes Theorem 4 in Section 3 of [26]. Thus, Lemma 16 can be used to modify the proof of
Theorem 6 in Section 4 of [26] in order to prove that a variant of Algorithm 2 from [26] will provide instance optimal
approximation guarantees along the lines of Equation 2 for general compressed sensing recovery problems.8 The
intuitive idea is as follows: If the constant c from Lemma 16 is set to be at least 4, then more than half of the K entries
ofM(K,n) · ~x can accurately estimate xn. This is enough to guarantee that the imaginary part of xn will be accurately
estimated by the median of the imaginary parts of all K properly scaled entries of M(K,n) · ~x. Of course, the real
part of xn can also be estimated in a similar fashion. Hence, given bothM andM~x ∈ Cm, Lemma 16 ensures that
computing N medians of K reweighted elements ofM~x will allow us to accurately estimate all N entries of ~x. If we
do this and then report only the largest 2k estimates in magnitude, together with their vector indexes, we will obtain an
approximation for ~x which is at least as good as ~xSopt

k
= ~xopt

k . See Algorithm 2 and Theorem 4 in [26] for a detailed
proof in the Fourier setting.

It is worth noting that the randomized approximation results in [26] also generalize in this manner (i.e., Corollaries
3 and 4 in [26]). If a small set of rows is randomly selected from a (K, cmin, α)-coherent matrix, the resulting submatrix
can still be used to yield an accurate instance optimal approximation for any ~x ∈ CN with high probability. The
proof of this fact follows from Corollary 17 below. However, before we can state the corollary we need an additional
definition: For any multiset,

s̃ =
{
s̃1, s̃2, . . . , s̃β

}
⊂ [1,m] ∩N,

we will letMs̃ denote the β ×N matrix formed by the β rows ofM listed in s̃. In other words,

Ms̃ =


Ms̃1

Ms̃2

...
Ms̃β

 . (16)

We have the following result.

Corollary 17. Suppose M is an m × N (K, cmin, α)-coherent matrix. Let k ∈
[
1,K · c2

min/α
]
∩ N, ε ∈ (0, 1], c ∈

[14,∞)∩N, σ ∈ [2/3, 1), and ~x ∈ CN. Select a multiset of the rows ofM, s̃ ⊂ [1,m]∩N, by independently choosing

β ≥ 28.56 ·
m
K

ln
( 2N

1 − σ

)
(17)

values from [1,m] ∩ N uniformly at random with replacement. If K > c · (kα/c2
minε) thenMs̃ will have both of the

following properties with probability at least σ:

8More precisely, the error bound in Equation 21 of Theorem 6 in [26] holds without the additional third 22
√

k ‖·‖1 term.
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1. There will be at least l̃ = 21 · ln
(

2N
1−σ

)
nonzero values in every column of Ms̃. Hence, Ms̃(l̃,n) will be well

defined for all n ∈ [0,N) ∩N (see Equation 13).

2. For all n ∈ [0,N)∩N more than l̃/2 of the entries inMs̃(l̃,n) ·~x (i.e., more than half of the values j ∈ [1, l̃]∩N,
counted with multiplicity) will have

∣∣∣∣∣∣
(
Ms̃(l,n) · ~x

)
j

(Ms̃(l,n)) j,n
− xn

∣∣∣∣∣∣ ≤ ε
∥∥∥∥~x − ~xopt

(k/ε)

∥∥∥∥
1

k
.

Proof:

Fix n ∈ [0,N)∩N. We select our multiset, s̃ ⊂ [1,m]∩N, of the rows ofM by choosing β elements of [1,m]∩N
uniformly at random with replacement. Denote the jth element chosen for s̃ by s̃ j. Finally, let Pn

j be the random
variable indicating whetherMs̃ j,n > 0, and let Qn

j be the random variable indicating whether s̃ j satisfies

∣∣∣∣∣∣∣
(
M · ~x

)
s̃ j

Ms̃ j,n
− xn

∣∣∣∣∣∣∣ ≤
ε
∥∥∥∥~x − ~xopt

(k/ε)

∥∥∥∥
1

k
(18)

conditioned on Pn
j . Thus, Pn

j = 1 ifMs̃ j,n > 0, and 0 otherwise. Similarly,

Qn
j =

{
1 if s̃ j satisfies Equation 18 and Pn

j = 1
0 otherwise

.

Lemma 16 implies that P
[
Qn

j = 1
∣∣∣ Pn

j = 1
]
> 6

7 . Furthermore, µ = E
[∑β

j=1 Qn
j

∣∣∣ Pn
1 , . . . ,P

n
β

]
≥

6
7

(∑β
j=1 Pn

j

)
.

Let l =
∑β

j=1 Pn
j . The Chernoff bound guarantees that

P


β∑

j=1

Qn
j <

4 · l
7

∣∣∣∣∣ l

 ≤ e−
µ
18 ≤ e−

l
21 .

Thus, if l > 21 we can see that
∑β

j=1 Qn
j will be less than l+1

2 with probability less than e−
l

21 . Hence, if l ≥ 21 ln
(

2N
1−σ

)
,

then Property 2 will fail to be satisfied for n with probability less than 1−σ
2N . Focusing now on l, we note that

P

[
Pn

j = 1
]
≥

K
m so that µ̃ = E [l] ≥ K

mβ.

Let l̃ = 21 ln
(

2N
1−σ

)
. Applying the Chernoff bound one additional time reveals thatP

[
l < l̃

]
< e−µ̃·

(
1− l̃

µ̃

)2
/2.Hence,

if we wish to bound P
[
l < l̃

]
from above by 1−σ

2N it suffices to have µ̃2
−

44
21 µ̃l̃ + l̃2 ≥ 0. Setting β ≥ 1.36 · m

K l̃ =

28.56 · m
K ln

(
2N
1−σ

)
achieves this goal. The end result is that Ms̃ will fail to satisfy both Properties 1 and 2 for any

n ∈ [0,N)∩N with probability less than 1−σ
N . Applying the union bound over all n ∈ [0,N)∩N finishes the proof. 2

Corollary 17 considers selecting a multiset of rows from a (K, cmin, α)-coherent matrix. Hence, some rows may be
selected more than once. If this occurs, rows should be considered to be selected multiple times for counting purposes
only. That is, all computations involving a row which is selected several times should still be carried out only once.
However, the results of these computations should be considered with greater weight during subsequent reconstruction
efforts (e.g., multiply selected rows should be considered as generating multiple duplicate entries inMs̃ · ~x).

In this paper we are primarily concerned with guaranteed approximation results. Hence, we will leave further
consideration of randomized approximation techniques to the reader. Instead, we will now consider fast approximation
algorithms for (K, cmin, α)-coherent matrices.
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A.2 Sublinear-Time Approximation Techniques

Consider the proof of Lemma 16 with c = 4 for a given m×N (K, cmin, α)-coherent matrixM, k ∈
[
1,K · c2

min/α
]
∩N,

and ε ∈ (0, 1]. Let ~x ∈ CN and suppose that

xn > 2δ = 2


ε
∥∥∥∥~x − ~xopt

(k/ε)

∥∥∥∥
1

k

 (19)

for some n ∈ [0,N)∩N. We will begin this section by quickly demonstrating a means of identifying n using only the
measurementsM~x ∈ Cm together with some additional linear measurements based on a modification of our incoherent
matrixM. This technique, first utilized in [13], will ultimately allow us to develop the sublinear-time approximation
schemes we seek. However, we require several definitions before we can continue with our demonstration.

Let A ∈ Rm×N and C ∈ Rm̃×N be real matrices. Then, their row tensor product, A ~ C, is defined to be the
(m · m̃) ×N matrix whose entries are given by

(A ~ C)i, j = Ai mod m, j · C i−i mod m
m , j.

In this section, we will use the row tensor product ofM with the
(
1 + dlog2 Ne

)
×N bit test matrix [13, 20] to help us

identify n from Equation 19.9 The
(
1 + dlog2 Ne

)
×N bit test matrix, BN, is defined by

(BN)i, j =

{
1 if i = 0
(i − 1)th bit in the binary expansion of j if i ∈

[
1, dlog2 Ne

] (20)

for 0 ≤ i ≤ dlog2 Ne and 0 ≤ j < N. For example, B8 has the form

B8 =


1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

 .
We will now demonstrate that (M ~BN) ~x contains enough information for us to identify any n ∈ [0,N)∩N satisfying
Equation 19.

Notice thatM~BN containsM as a submatrix. This is due to the first row of all ones inBN. Similarly, the second
row of BN ensures thatM ~BN will contain another m ×N submatrix which is identical toM, except with all of its
even columns zeroed out. We will refer to this m ×N submatrix ofM ~BN asModd. We can see that

Modd = M ~ (BN)1 =
(
~0 M·,1 ~0 M·,3 ~0 M·,5 ~0 . . .

)
.

Furthermore, we define
Meven := M − M ~ (BN)1 = M − Modd.

Clearly, if we are given (M ~BN) ~x, we will also haveM~x, Modd~x, andMeven~x ∈ Cm. We can use this information
to determine whether n from Equation 19 is even or odd as follows.

Lemma 16 with c = 4 guarantees that more than K/2 distinct elements ofM~x ∈ Cm will be of the form(
M~x

)
j = xn · M j,n + (M′(m,n)) j · ~y (21)

for some j ∈ [1,m] and ~y ∈ CN−1 with
∣∣∣(M′(m,n)) j · ~y

∣∣∣ ≤ cminδ (see Equations 14 and 19 together with the proof of
Lemma 16). Suppose n is odd. Then, for each j satisfying Equation 21, we will have∣∣∣(Meven~x

)
j

∣∣∣ =
∣∣∣∣(M′even(m,n)~y

)
j

∣∣∣∣ ≤ cminδ < |xn| · M j,n −
∣∣∣(M′odd(m,n)) j · ~y

∣∣∣ ≤ ∣∣∣(Modd~x
)

j

∣∣∣ .
9We could also use the number theoretic Nλ,s1 matrices defined in Section 5 of [26] here in place of the bit test matrix. More generally, any

1-disjunct matrix with an associated fast decoding algorithm could replace the bit test matrix throughout this section. Note that a fast O(t)-time
binary tree decoder can be built for any t ×N 1-disjunct matrix anytime one has access to Ω(N) memory.
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Algorithm 1 APPROXIMATE ~x
1: Input: An m ×N (K, cmin, α)-coherent matrix,M, and (M ~BN) ~x ∈ Cmdlog2 Ne+m

2: Output: ~zS ≈ ~xS, an approximation to ~x opt
k

3: Initialize multiset S← ∅, ~z← ~0N, ~b← ~0dlog2 Ne

IDENTIFY ALL n ∈ [0,N) ∩N THAT SATISFY EQUATION 19
4: for j from 1 to m do
5: for i from 0 to dlog2 Ne − 1 do
6: if

∣∣∣(M ~ (BN)i+1 ~x
)

j

∣∣∣ > ∣∣∣(M~x − M ~ (BN)i+1 ~x
)

j

∣∣∣ then
7: bi ← 1
8: else
9: bi ← 0

10: end if
11: end for
12: n←

∑dlog2 Ne−1
i=0 bi2i

13: S← S ∪ {n}
14: end for

ESTIMATE ~xS ≈ ~x
opt

k USING LEMMA 16

15: for each n value belonging to S with multiplicity > K
2 do

16: Re {zn} ← median of multiset
{
Re

{(
M(K,n) · ~x

)
h / (M(K,n))h,n

} ∣∣∣ 1 ≤ h ≤ K
}

17: Im {zn} ← median of multiset
{
Im

{(
M(K,n) · ~x

)
h / (M(K,n))h,n

} ∣∣∣ 1 ≤ h ≤ K
}

18: end for
19: Sort nonzero ~z entries by magnitude so that |zn1 | ≥ |zn2 | ≥ |zn3 | ≥ . . .
20: S← {n1,n2, . . . ,n2k}

21: Output: ~zS

Similarly, if n is even, then for each such j we will have∣∣∣(Modd~x
)

j

∣∣∣ =
∣∣∣∣(M′odd(m,n)~y

)
j

∣∣∣∣ ≤ cminδ < |xn| · M j,n −
∣∣∣(M′even(m,n)) j · ~y

∣∣∣ ≤ ∣∣∣(Meven~x
)

j

∣∣∣ .
Therefore, we can correctly determine n mod 2 by comparing

∣∣∣(Modd~x
)

j

∣∣∣ with
∣∣∣(Meven~x

)
j

∣∣∣ whenever both Equa-
tions 19 and 21 hold. Of course, there is nothing particularly special about the lowest order bit of the binary represen-
tation of n. More generally, we can correctly determine the ith bit of n ∈ [0,N)∩N by comparing

∣∣∣(M ~ (BN)i+1 ~x
)

j

∣∣∣
with

∣∣∣[(M − M ~ (BN)i+1) ~x
]

j

∣∣∣ whenever both Equations 19 and 21 hold.
We now know that we can correctly determine n whenever both Equations 19 and 21 hold by finding its binary

representation one bit at a time. Furthermore, Lemma 16 with c ≥ 4 guarantees that more than K/2 of the j ∈ [1,m]
will satisfy Equation 21 for any given n. Hence, we can correctly reconstruct every n for which Equation 19 holds
more than K/2 times by attempting to decode its binary representation for all j ∈ [1,m]. Utilizing these methods
together with ideas from Section A.1, we obtain Algorithm 1.

In light of the preceding discussion, we can see that Algorithm 1 will be guaranteed to identify all n ∈ [0,N) ∩N
that satisfy Equation 19 at least K

2 times each. Lemma 16 can then be used to estimate xn for each of these n values
as previously discussion in Section A.1. The end result is that all relatively large entries in ~x will be identified and
accurately estimated. By formalizing the discussion above, we obtain the following result, the proof of which is
analogous to the proof of Theorem 7 in Section 5 of [26].

Theorem 18. SupposeM is an m×N (K, cmin, α)-coherent matrix. Furthermore, let ε ∈ (0, 1], k ∈
[
1,K · εc

2
min

4α

)
∩N,
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and ~x ∈ CN. Then, Algorithm 1 will output a ~zS ∈ C
N satisfying

∥∥∥~x − ~zS

∥∥∥
2
≤

∥∥∥~x − ~x opt
k

∥∥∥
2

+
22ε

∥∥∥∥~x − ~xopt
(k/ε)

∥∥∥∥
1

√
k

.

Algorithm 1 can be implemented to run in O
(
m log N

)
time.

The runtime of Algorithm 1 can be accounted for as follows: Lines 4 through 14 can be implemented to run in
O(m log N) time since their execution time will be dominated by the time required to read each entry of (M ~BN) ~x ∈
Cmdlog2 Ne+m. Counting the multiplicity of the O(m) entries in S in line 15 can be done by sorting S in O(m log m)
time, followed by one O(m)-time scan of the sorted data. Lines 16 and 17 will each be executed a total of O(m/K)
times apiece. Furthermore, lines 16 and 17 can each be executed in O(K log K) time assuming that each M(K,n)
submatrix is known in advance.10 Thus, the total runtime of lines 4 through 18 will also be O(m log N). Finally, line
19 requires that at most O(m/K) items be sorted, which can likewise be accomplished in O(m log N) time. Therefore,
the total runtime of Algorithm 1 will be O(m log N).

10If eachM(K,n) submatrix is not computed once in advance this runtime will be O(m log m) instead of O(K log K).
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